Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomech Eng ; 137(4): 040801, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25378106

RESUMEN

The most common cause of death in the developed world is cardiovascular disease. For decades, this has provided a powerful motivation to study the effects of mechanical forces on vascular cells in a controlled setting, since these cells have been implicated in the development of disease. Early efforts in the 1970 s included the first use of a parallel-plate flow system to apply shear stress to endothelial cells (ECs) and the development of uniaxial substrate stretching techniques (Krueger et al., 1971, "An in Vitro Study of Flow Response by Cells," J. Biomech., 4(1), pp. 31-36 and Meikle et al., 1979, "Rabbit Cranial Sutures in Vitro: A New Experimental Model for Studying the Response of Fibrous Joints to Mechanical Stress," Calcif. Tissue Int., 28(2), pp. 13-144). Since then, a multitude of in vitro devices have been designed and developed for mechanical stimulation of vascular cells and tissues in an effort to better understand their response to in vivo physiologic mechanical conditions. This article reviews the functional attributes of mechanical bioreactors developed in the 21st century, including their major advantages and disadvantages. Each of these systems has been categorized in terms of their primary loading modality: fluid shear stress (FSS), substrate distention, combined distention and fluid shear, or other applied forces. The goal of this article is to provide researchers with a survey of useful methodologies that can be adapted to studies in this area, and to clarify future possibilities for improved research methods.


Asunto(s)
Vasos Sanguíneos , Técnicas Citológicas/instrumentación , Fenómenos Mecánicos , Animales , Fenómenos Biomecánicos , Humanos , Estrés Mecánico
2.
Vet Surg ; 43(7): 860-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24484218

RESUMEN

OBJECTIVE: To compare the biomechanical properties of clamp rod internal fixation (CRIF)/rod and LC-DCP/rod constructs in a canine femoral gap model. STUDY DESIGN: Cadaveric biomechanical study. SAMPLE POPULATION: Canine femora (n = 10 pair). METHODS: Femora with 40 mm ostectomies were assigned to LC-DCP/rod or CRIF/rod treatment groups. Five construct pairs had 4-point bending and 5 pairs had torsional loading. Construct stiffness, strength, and bending angle at failure or permanent angular deformation (torsional loading) were determined. Statistical comparisons were performed using Student t tests; significance was set at P ≤ .05. RESULTS: There was significantly greater permanent angular deformation, or residual twist, in the CRIF/rod constructs (23.1 ± 0.89°) compared with LC-DCP/rod constructs (7.47 ± 2.08°). Whereas there was no significant difference in torsional stiffness of these constructs at torsional loads <4.92 N m (P = .819), LC-DCP/rod constructs had significantly greater torsional stiffness (0.303 ± 0.079 N m/°) and strength (11.546 ± 2.79 N m) than CRIF/rod construct stiffness (0.06 ± 0.013 N m/°) and strength (6.078 ± 0.527 N m) at torsional loads >4.92 N m. Differences in stiffness and strength in 4-point bending were not statistically significant. CONCLUSIONS: LC-DCP/rod constructs had significantly less permanent angular deformation than CRIF/rod constructs. CRIF/rod constructs became less stiff as torsional load was increased, thus the LC-DCP/rod constructs had significantly greater torsional stiffness and strength under high torsional loads. LC-DCP/rod and CRIF/rod constructs performed similarly under 4-point bend loading conditions.


Asunto(s)
Enfermedades de los Perros/cirugía , Fémur/cirugía , Fijación Interna de Fracturas/veterinaria , Inestabilidad de la Articulación/veterinaria , Animales , Fenómenos Biomecánicos , Cadáver , Perros , Fijación Interna de Fracturas/instrumentación , Técnicas In Vitro , Inestabilidad de la Articulación/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA