Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Biol ; 11: 99, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-24010524

RESUMEN

BACKGROUND: Innate immune responses are evolutionarily conserved processes that provide crucial protection against invading organisms. Gene activation by potent NF-κB transcription factors is essential both in mammals and Drosophila during infection and stress challenges. If not strictly controlled, this potent defense system can activate autoimmune and inflammatory stress reactions, with deleterious consequences for the organism. Negative regulation to prevent gene activation in healthy organisms, in the presence of the commensal gut flora, is however not well understood. RESULTS: We show that the Drosophila homolog of mammalian Oct1/POU2F1 transcription factor, called Nubbin (Nub), is a repressor of NF-κB/Relish-driven antimicrobial peptide gene expression in flies. In nub1 mutants, which lack Nub-PD protein, excessive expression of antimicrobial peptide genes occurs in the absence of infection, leading to a significant reduction of the numbers of cultivatable gut commensal bacteria. This aberrant immune gene expression was effectively blocked by expression of Nub from a transgene. We have identified an upstream regulatory region, containing a cluster of octamer sites, which is required for repression of antimicrobial peptide gene expression in healthy flies. Chromatin immunoprecipitation experiments demonstrated that Nub binds to octamer-containing promoter fragments of several immune genes. Gene expression profiling revealed that Drosophila Nub negatively regulates many genes that are involved in immune and stress responses, while it is a positive regulator of genes involved in differentiation and metabolism. CONCLUSIONS: This study demonstrates that a large number of genes that are activated by NF-κB/Relish in response to infection are normally repressed by the evolutionarily conserved Oct/POU transcription factor Nub. This prevents uncontrolled gene activation and supports the existence of a normal gut flora. We suggest that Nub protein plays an ancient role, shared with mammalian Oct/POU transcription factors, to moderate responses to immune challenge, thereby increasing the tolerance to biotic stress.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Tracto Gastrointestinal/microbiología , Proteínas de Homeodominio/metabolismo , Microbiota , Factores del Dominio POU/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Inmunidad Innata/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Factores del Dominio POU/genética , Regulación hacia Arriba
2.
Genetics ; 175(2): 659-69, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17110491

RESUMEN

Scalloped (SD), a TEA/ATTS-domain-containing protein, is required for the proper development of Drosophila melanogaster. Despite being expressed in a variety of tissues, most of the work on SD has been restricted to understanding its role and function in patterning the adult wing. To gain a better understanding of its role in development, we generated sd(47M) flip-in mitotic clones. The mitotic clones had developmental defects in the leg and eye. Further, by removing the VG domains involved in activation, we created a reagent (VGDeltaACT) that disrupts the ability of SD to form a functional transcription factor complex and produced similar phenotypes to the flip-in mitotic clones. The VGDeltaACT construct also disrupted adult CNS development. Expression of the VGDeltaACT construct in the wing alters the cellular localization of VG and produces a mutant phenotype, indicating that the construct is able to antagonize the normal function of the SD/VG complex. Expression of the protein:protein interaction portion of SD is also able to elicit similar phenotypes, suggesting that SD interacts with other cofactors in the leg, eye, and adult CNS. Furthermore, antagonizing SD in larval tissues results in cell death, indicating that SD may also have a role in cell survival.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Extremidades/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Proteínas Nucleares/metabolismo , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Animales , Supervivencia Celular , Células Clonales , Proteínas de Drosophila/química , Drosophila melanogaster/ultraestructura , Embrión no Mamífero/metabolismo , Ojo/citología , Ojo/ultraestructura , Anomalías del Ojo , Mitosis , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Lóbulo Óptico de Animales no Mamíferos/citología , Factores de Transcripción/química , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo
5.
J Innate Immun ; 4(3): 273-83, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22237424

RESUMEN

The barrier epithelia of multicellular organisms frequently come into direct contact with microorganisms and thus need to fulfill the important task of preventing the penetration of pathogens that could cause systemic infections. A functional immune defence in the epithelial linings of the digestive, respiratory and reproductive organs as well as the epidermis/skin of animals is therefore of crucial importance for survival. Epithelial defence reactions are likely to be evolutionarily ancient, and the use of invertebrate animal models, such as insects and nematodes, has been crucial in unravelling the mechanisms underlying epithelial immunity. This review addresses basic questions of epithelial immunity in animals and humans. It focuses on recent developments in the understanding of the immune responses in the fruit fly Drosophila melanogaster and how the innate immune system acts locally in the epidermis and cuticle, tracheae, gut and genital organs. Both basal immune activities in epithelia that are constantly exposed to microbes as well as positive and negative regulation in response to pathogenic organisms are covered. Important immuno-physiological aspects of epithelial defence mechanisms are also discussed, such as wound healing, re-epithelialization and intestinal homeostasis.


Asunto(s)
Drosophila melanogaster/inmunología , Epitelio/inmunología , Mucosa Intestinal/inmunología , Sistema Respiratorio/inmunología , Piel/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/inmunología , Proteínas de Homeodominio/inmunología , Homeostasis/inmunología , Humanos , Inmunidad Innata , Inmunomodulación , Receptores de Reconocimiento de Patrones/inmunología , Transducción de Señal , Activación Transcripcional
6.
Mol Cell Biol ; 31(4): 897-909, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21149573

RESUMEN

While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas de Drosophila/antagonistas & inhibidores , Evolución Molecular , Técnicas de Silenciamiento del Gen , Genes de Insecto , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Mamíferos/genética , Modelos Biológicos , Datos de Secuencia Molecular , Estrés Oxidativo , Filogenia , Interferencia de ARN , Proteínas Represoras/antagonistas & inhibidores , Homología de Secuencia de Aminoácido
7.
PLoS One ; 6(11): e27434, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22110651

RESUMEN

The fungal pathogen Candida albicans is a common cause of opportunistic infections in humans. We report that wild-type Drosophila melanogaster (OrR) flies are susceptible to virulent C. albicans infections and have established experimental conditions that enable OrR flies to serve as model hosts for studying C. albicans virulence. After injection into the thorax, wild-type C. albicans cells disseminate and invade tissues throughout the fly, leading to lethality. Similar to results obtained monitoring systemic infections in mice, well-characterized cph1Δ efg1Δ and csh3Δ fungal mutants exhibit attenuated virulence in flies. Using the OrR fly host model, we assessed the virulence of C. albicans strains individually lacking functional components of the SPS sensing pathway. In response to extracellular amino acids, the plasma membrane localized SPS-sensor (Ssy1, Ptr3, and Ssy5) activates two transcription factors (Stp1 and Stp2) to differentially control two distinct modes of nitrogen acquisition (host protein catabolism and amino acid uptake, respectively). Our results indicate that a functional SPS-sensor and Stp1 controlled genes required for host protein catabolism and utilization, including the major secreted aspartyl protease SAP2, are required to establish virulent infections. By contrast, Stp2, which activates genes required for amino acid uptake, is dispensable for virulence. These results indicate that nutrient availability within infected hosts directly influences C. albicans virulence.


Asunto(s)
Candida albicans/metabolismo , Candida albicans/patogenicidad , Drosophila melanogaster/microbiología , Nitrógeno/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Femenino , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica/inmunología , Inyecciones , Masculino , Ratones , Mutación , Fagocitosis , Saccharomyces cerevisiae/inmunología , Transducción de Señal/inmunología , Tórax/microbiología
8.
Mol Cell Biol ; 30(14): 3672-84, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20457811

RESUMEN

Innate immunity operates as a first line of defense in multicellular organisms against infections caused by different classes of microorganisms. Antimicrobial peptides (AMPs) are synthesized constitutively in barrier epithelia to protect against microbial attack and are also upregulated in response to infection. Here, we implicate Drifter/Ventral veinless (Dfr/Vvl), a class III POU domain transcription factor, in tissue-specific regulation of the innate immune defense of Drosophila. We show that Dfr/Vvl is highly expressed in a range of immunocompetent tissues, including the male ejaculatory duct, where its presence overlaps with and drives the expression of cecropin, a potent broad-spectrum AMP. Dfr/Vvl overexpression activates transcription of several AMP genes in uninfected flies in a Toll pathway- and Imd pathway-independent manner. Dfr/Vvl activates a CecA1 reporter gene both in vitro and in vivo by binding to an upstream enhancer specific for the male ejaculatory duct. Further, Dfr/Vvl and the homeodomain protein Caudal (Cad) activate transcription synergistically via this enhancer. We propose that the POU protein Dfr/Vvl acts together with other regulators in a combinatorial manner to control constitutive AMP gene expression in a gene-, tissue-, and sex-specific manner, thus promoting a first-line defense against infection in tissues that are readily exposed to pathogens.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/inmunología , Inmunidad Innata/genética , Factores del Dominio POU/metabolismo , Animales , Animales Modificados Genéticamente , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Secuencia de Bases , Cartilla de ADN/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Elementos de Facilitación Genéticos , Femenino , Genes de Insecto , Genitales Masculinos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Proteínas de Homeodominio/metabolismo , Masculino , Modelos Biológicos , Mutación , Factores del Dominio POU/genética , Factores del Dominio POU/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Activación Transcripcional
9.
Am J Nurs ; 109(2): 54-5, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19300003

RESUMEN

The Pennsylvania Patient Safety Reporting System (PA-PSRS, pronounced PAY-sirs) is a confidential, statewide reporting system on the Internet to which all Pennsylvania hospitals, outpatient-surgery facilities, and birthing centers, as well as some abortion facilities, were required to file information on medical errors beginning in June 2004.Safety Monitor, this column in AJN from PA-PSRS, informs nurses on issues that can affect patient safety and presents strategies they can integrate easily into practice.For more information on PA-PSRS, visit the Web site of Pennsylvania's Patient Safety Authority, at www.psa.state.pa.us. For the original articles discussed in this column or for other articles on patient safety, click on "Advisories and Related Resources" in the left-hand navigation menu.This is a periodic column from the Pennsylvania Patient Safety Reporting System.

10.
Mol Cell Biol ; 28(15): 4883-95, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18519585

RESUMEN

Drosophila innate immunity is controlled primarily by the activation of IMD (immune deficiency) or Toll signaling leading to the production of antimicrobial peptides (AMPs). IMD signaling also activates the JUN N-terminal kinase (JNK) cascade, which is responsible for immune induction of non-antimicrobial peptide immune gene transcription though the transcription factor AP-1. Transcription of the Dopa decarboxylase (Ddc) gene is induced in response to gram-negative and gram-positive septic injury, but not aseptic wounding. Transcription is induced throughout the epidermis and not specifically at the site of infection. Ddc transcripts are detectible within 2 h and remain high for several hours following infection with either gram-negative or gram-positive bacteria. Using Ddc-green fluorescent protein (GFP) reporter gene constructs, we show that a conserved consensus AP-1 binding site upstream of the Ddc transcription start site is required for induction. However, neither the Toll, IMD, nor JNK pathway is involved. Rather, Ddc transcription depends on a previously uncharacterized member of the p38 mitogen-activated protein kinase family, p38c. We propose that the involvement of DDC in a new pathway involved in Drosophila immunity increases the levels of dopamine, which is metabolized to produce reactive quinones that exert an antimicrobial effect on invading bacteria.


Asunto(s)
Dopa-Decarboxilasa/biosíntesis , Drosophila melanogaster/enzimología , Drosophila melanogaster/inmunología , Inducción Enzimática , Epidermis/enzimología , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Secuencia de Aminoácidos , Animales , Infecciones Bacterianas/enzimología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Sitios de Unión , Secuencia Conservada , Dopa-Decarboxilasa/química , Dopa-Decarboxilasa/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Epidermis/inmunología , Inmunidad Innata/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Datos de Secuencia Molecular , Unión Proteica , Análisis de Supervivencia , Factores de Tiempo , Receptores Toll-Like/metabolismo , Factor de Transcripción AP-1/metabolismo
11.
Genome ; 50(11): 1049-60, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18059550

RESUMEN

The DOPA decarboxylase gene (Ddc) belongs to the "early-late" class of ecdysone-inducible genes in Drosophila melanogaster. Its expression is up-regulated in epidermal tissues by the ecdysone receptor acting through a response element, EcRE. In this paper, we show that another member of the nuclear receptor superfamily, DHR38, may act as a repressor of epidermal Ddc while inducing Ddc expression in neuronal cells. DHR38 does not behave as a classical co-repressor of the ecdysone receptor though, since the site through which DHR38 acts is distinct from the EcRE. Ectopic expression of a Dhr38 cDNA from a heat-shock promoter completely repressed transcription from the endogenous Ddc promoter and from an intact reporter construct in the hypoderm and in imaginal discs. Ectopic DHR38 had no effect on the transcription of a reporter driven by a Ddc fragment missing the DHR38 binding site. Neither reporter expression nor endogenous Ddc transcript levels were affected in a Dhr38 mutant background. Because most mutant organisms pupariate apparently normally and many of these survive to eclose, we believe that some functional redundancy exists within the Dhr38 regulatory network operating in epidermal tissues. In contrast to its apparent repressor function in epidermal tissues, DHR38 may act as a positive regulator of neural Ddc expression. Ectopic expression of DHR38 throughout the CNS induced as much as a 20-fold increase in Ddc transcripts in the set of neurons in which DDC normally appears.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dopa-Decarboxilasa/biosíntesis , Dopa-Decarboxilasa/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epidermis/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Secuencia de Bases , Sitios de Unión , Núcleo Celular/metabolismo , Drosophila melanogaster , Modelos Biológicos , Datos de Secuencia Molecular
12.
Development ; 134(24): 4395-404, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18003740

RESUMEN

A neuropeptide hormone-signalling pathway controls events surrounding eclosion in Drosophila melanogaster. Ecdysis-triggering hormone, eclosion hormone and crustacean cardioactive peptide (CCAP) together control pre-eclosion and eclosion events, whereas bursicon, through its receptor rickets (RK), controls post-eclosion development. Cuticular tanning is a convenient visible marker of the temporally precise post-eclosion developmental progression, and we investigated how it is controlled by the ecdysis neuropeptide cascade. Together, two enzymes, tyrosine hydroxylase (TH, encoded by ple) and dopa decarboxylase (DDC, encoded by Ddc), produce the dopamine that is required for tanning. Levels of both the ple and Ddc transcripts begin to accumulate before eclosion, coincident with the onset of pigmentation of the pharate adult bristles and epidermis. Since DDC activity is high before the post-eclosion onset of tanning, a different factor must be regulated to switch on tanning. Transcriptional control of ple does not regulate the onset of tanning because ple transcript levels remain unchanged from 24 hours before to 12 hours after eclosion. TH protein present before eclosion is degraded, and no TH activity can be detected at eclosion. However, TH protein rapidly accumulates within an hour of eclosion and we provide evidence that CCAP controls this process. Furthermore, we show that TH is transiently activated during tanning by phosphorylation at Ser32, as a result of bursicon signalling. We conclude that the ecdysis hormone cascade acts as a regulatory switch to control the precise onset of tanning by both translational and activational control of TH.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Hormonas de Insectos/metabolismo , Neuropéptidos/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cartilla de ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Hormonas de Insectos/genética , Mutación , Neuropéptidos/genética , ARN/genética , ARN/metabolismo , Transducción de Señal , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
13.
Genome ; 49(9): 1184-92, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17110998

RESUMEN

Transposable P elements have been used extensively for Drosophila mutagenesis. While their mutagenic activity has long been recognized, the mechanisms by which P elements cause mutations are varied and not completely understood. We describe here an experiment to replace a P element at vestigial (vg) that caused a strong mutant phenotype (P[21-3]) with a P element (P[21]) known to produce a very weak phenotype when inserted at vg. In addition to testing the feasibility of P element replacements at vg, our investigation led to the production of 7 new vg alleles and 1 apparent second site suppressor. All the vg21-3 revertants that we recovered had a P element inserted into the first exon of vg at the same location and in the same orientation as the original element in vg21-3, providing a unique opportunity to study the mechanism of transposon mutagenesis. A majority of the revertants arose from a previously described event: internal deletion of P sequences, including the P promoter. In addition, 3 novel reversions of the vg21-3 wing phenotype were recovered. The wings of homozygous vg21r36 flies were normal. However, vg21r36 in combination with a deletion of the vg locus exhibited a strong mutant wing phenotype. This was surprising, because the P element insertion in vg21r36 was very similar to that found in the vg21 allele, which showed only slight nicking of the wings in combination with a deletion. In vg21r4, reversion was caused by a tandem insertion of P[21] and the original P[21-3] element present in vg21-3. Finally, the vg21r7 revertant had a P[21-3] insert at vg and 3 additional P elements elsewhere in the genome. We hypothesize that reversion in the 3 novel cases might be caused by P repressor produced by an element at vg or, in the case of vg21r7, elsewhere in the genome. This raises an interesting aspect of P element evolution. While P transposons produce mutations that might prove deleterious to their host, their success in invading the genome of D. melanogaster may be explained by their ability to silence those same mutations by a range of repressor-producing elements.


Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Alelos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Femenino , Masculino , Mutagénesis , Mutación , Proteínas Nucleares/genética , Fenotipo , Alas de Animales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA