Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Adv Manuf Technol ; 124(7-8): 2685-2700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36567894

RESUMEN

The non-degradable metallic implants, such as bone screws, often act as the source of dysfunction and harmful corrosion products in the aqueous environment inside the human body. Many of these implants are fixed either temporarily or permanently into the human body, and therefore, both need to match tight tolerances with a remarkably finished surface to eradicate burrs or striations. In this regard, the new generation of degradable magnesium (Mg) alloy implants with excellent osseointegration and low elasticity (like that of human bone), minimizing stress shielding, have been identified as potential candidates to challenge surgical procedures reintervention. However, the biological response of an implant toward the cells in vivo can be predominantly regulated by modifying the surface chemistry, morphology, and corrosion characteristics. Powder or abrasive-mixed-micro-electric discharge machining (A-M-µ-EDM) is gaining attention for executing precision machining and achieving a simultaneous surface modification on micro-manufactured surfaces, suitable for clinical applications. Therefore, the present research aimed at improving the surface characteristics of Mg AZ31B alloy via an augmented performance of A-M-µ-EDM by adopting copper and brass-micro-electrodes (C-µ-E and B-µ-E) in association with distinct abrasive particle concentrations (APCs: 0, 1.5, 3, 4.5, and 6 g/l) of bioactive zinc abrasives. To enhance the A-M-µ-EDM capabilities, the experiments were designed with a one-variable-at-a-time (OVAT) strategy, and the trial runs were conducted using different combinations of µ-electrodes and APCs. The superior performance of A-M-µ-EDM was noticed with the fusion of C-µ-E and 3 g/l APC in terms of minimum machining time (MT) and dimensional deviation (DD). The additional outcomes of this work reported favorable improvements in surface morphology, chemistry, topography, wettability, microhardness, and corrosion resistance on the A-M-µ-EDMed sample of interest.

2.
Int J Adv Manuf Technol ; 126(9-10): 4617-4636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197058

RESUMEN

Biomaterials are engineered to develop an interaction with living cells for therapeutic and diagnostic purposes. The last decade reported a tremendously rising shift in the requirement for miniaturized biomedical implants exhibiting high precision and comprising various biomaterials such as non-biodegradable titanium (Ti) alloys and biodegradable magnesium (Mg) alloys. The excellent mechanical properties and lightweight characteristics of Mg AZ91D alloy make it an emerging material for biomedical applications. In this regard, micro-electric discharge machining (µEDM) is an excellent method that can be used to make micro-components with high dimensional accuracy. In the present research, attempts were made to improve the µEDM capabilities by using cryogenically-treated copper (CTCTE) and brass tool electrodes (CTBTE) amid machining of biodegradable Mg AZ91D alloy, followed by their comparison with a pair of untreated copper (UCTE) and brass tool electrodes (UBTE) in terms of minimum machining-time and dimensional-irregularity. To investigate the possible modification on the surfaces achieved with minimum machining-time and dimensional-irregularity, the morphology, chemistry, micro-hardness, corrosion resistance, topography, and wettability of these surfaces were further examined. The surface produced by CTCTE exhibited the minimum surface micro-cracks and craters, acceptable recast layer thickness (2.6 µm), 17.45% improved micro-hardness, satisfactory corrosion resistance, adequate surface roughness (Ra: 1.08 µm), and suitable hydrophobic behavior (contact angle: 119°), confirming improved biodegradation rate. Additionally, a comparative analysis among the tool electrodes revealed that cryogenically-treated tool electrodes outperformed the untreated ones. CTCTE-induced modification on the Mg AZ91D alloy surface suggests its suitability in biodegradable medical implant applications.

3.
Int J Adv Manuf Technol ; 120(3-4): 1473-1530, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228769

RESUMEN

There is a tremendous increase in the demand for converting biomaterials into high-quality industrially manufactured human body parts, also known as medical implants. Drug delivery systems, bone plates, screws, cranial, and dental devices are the popular examples of these implants - the potential alternatives for human life survival. However, the processing techniques of an engineered implant largely determine its preciseness, surface characteristics, and interactive ability with the adjacent tissue(s) in a particular biological environment. Moreover, the high cost-effective manufacturing of an implant under tight tolerances remains a challenge. In this regard, several subtractive or additive manufacturing techniques are employed to manufacture patient-specific implants, depending primarily on the required biocompatibility, bioactivity, surface integrity, and fatigue strength. The present paper reviews numerous non-degradable and degradable metallic implant biomaterials such as stainless steel (SS), titanium (Ti)-based, cobalt (Co)-based, nickel-titanium (NiTi), and magnesium (Mg)-based alloys, followed by their processing via traditional turning, drilling, and milling including the high-speed multi-axis CNC machining, and non-traditional  abrasive water jet machining (AWJM), laser beam machining (LBM), ultrasonic machining (USM), and electric discharge machining (EDM) types of subtractive manufacturing techniques. However, the review further funnels down its primary focus on Mg, NiTi, and Ti-based alloys on the basis of the increasing trend of their implant applications in the last decade due to some of their outstanding properties. In the recent years, the incorporation of cryogenic coolant-assisted traditional subtraction of biomaterials has gained researchers' attention due to its sustainability, environment-friendly nature, performance, and superior biocompatible and functional outcomes fitting for medical applications. However, some of the latest studies reported that the medical implant manufacturing requirements could be more remarkably met using the non-traditional subtractive manufacturing approaches. Altogether, cryogenic  machining among the traditional routes and EDM among the non-traditional means along with their variants, were identified as some of the most effective subtractive manufacturing techniques for achieving the dimensionally accurate and biocompatible metallic medical implants with significantly modified surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA