Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38873338

RESUMEN

Chest X-rays (CXRs) play a pivotal role in cost-effective clinical assessment of various heart and lung related conditions. The urgency of COVID-19 diagnosis prompted their use in identifying conditions like lung opacity, pneumonia, and acute respiratory distress syndrome in pediatric patients. We propose an AI-driven solution for binary COVID-19 versus non-COVID-19 classification in pediatric CXRs. We present a Federated Self-Supervised Learning (FSSL) framework to enhance Vision Transformer (ViT) performance for COVID-19 detection in pediatric CXRs. ViT's prowess in vision-related binary classification tasks, combined with self-supervised pre-training on adult CXR data, forms the basis of the FSSL approach. We implement our strategy on the Rhino Health Federated Computing Platform (FCP), which ensures privacy and scalability for distributed data. The chest X-ray analysis using the federated SSL (CAFES) model, utilizes the FSSL-pre-trained ViT weights and demonstrated gains in accurately detecting COVID-19 when compared with a fully supervised model. Our FSSL-pre-trained ViT showed an area under the precision-recall curve (AUPR) of 0.952, which is 0.231 points higher than the fully supervised model for COVID-19 diagnosis using pediatric data. Our contributions include leveraging vision transformers for effective COVID-19 diagnosis from pediatric CXRs, employing distributed federated learning-based self-supervised pre-training on adult data, and improving pediatric COVID-19 diagnosis performance. This privacy-conscious approach aligns with HIPAA guidelines, paving the way for broader medical imaging applications.

2.
Health Informatics J ; 29(4): 14604582231207744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37864543

RESUMEN

Cross-institution collaborations are constrained by data-sharing challenges. These challenges hamper innovation, particularly in artificial intelligence, where models require diverse data to ensure strong performance. Federated learning (FL) solves data-sharing challenges. In typical collaborations, data is sent to a central repository where models are trained. With FL, models are sent to participating sites, trained locally, and model weights aggregated to create a master model with improved performance. At the 2021 Radiology Society of North America's (RSNA) conference, a panel was conducted titled "Accelerating AI: How Federated Learning Can Protect Privacy, Facilitate Collaboration and Improve Outcomes." Two groups shared insights: researchers from the EXAM study (EMC CXR AI Model) and members of the National Cancer Institute's Early Detection Research Network's (EDRN) pancreatic cancer working group. EXAM brought together 20 institutions to create a model to predict oxygen requirements of patients seen in the emergency department with COVID-19 symptoms. The EDRN collaboration is focused on improving outcomes for pancreatic cancer patients through earlier detection. This paper describes major insights from the panel, including direct quotes. The panelists described the impetus for FL, the long-term potential vision of FL, challenges faced in FL, and the immediate path forward for FL.


Asunto(s)
Inteligencia Artificial , Neoplasias Pancreáticas , Humanos , Privacidad , Aprendizaje , Neoplasias Pancreáticas
3.
Future Healthc J ; 9(1): 75-78, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35372779

RESUMEN

Interest in artificial intelligence (AI) has grown exponentially in recent years, attracting sensational headlines and speculation. While there is considerable potential for AI to augment clinical practice, there remain numerous practical implications that must be considered when exploring AI solutions. These range from ethical concerns about algorithmic bias to legislative concerns in an uncertain regulatory environment. In the absence of established protocols and examples of best practice, there is a growing need for clear guidance both for innovators and early adopters. Broadly, there are three stages to the innovation process: invention, development and implementation. In this paper, we present key considerations for innovators at each stage and offer suggestions along the AI development pipeline, from bench to bedside.

4.
Medicine (Baltimore) ; 101(29): e29587, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35866818

RESUMEN

To tune and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different patient populations. A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity (pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from 4 test sets, including 3 from the United States (patients hospitalized at an academic medical center (N = 154), patients hospitalized at a community hospital (N = 113), and outpatients (N = 108)) and 1 from Brazil (patients at an academic medical center emergency department (N = 303)). Radiologists from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores as a measure of model performance (Pearson R). The Uniform Manifold Approximation and Projection (UMAP) technique was used to visualize the neural network results. Tuning the deep learning model with outpatient data showed high model performance in 2 United States hospitalized patient datasets (R = 0.88 and R = 0.90, compared to baseline R = 0.86). Model performance was similar, though slightly lower, when tested on the United States outpatient and Brazil emergency department datasets (R = 0.86 and R = 0.85, respectively). UMAP showed that the model learned disease severity information that generalized across test sets. A deep learning model that extracts a COVID-19 severity score on CXRs showed generalizable performance across multiple populations from 2 continents, including outpatients and hospitalized patients.


Asunto(s)
COVID-19 , Aprendizaje Profundo , COVID-19/diagnóstico por imagen , Humanos , Pulmón , Radiografía Torácica/métodos , Radiólogos
5.
Sci Rep ; 11(1): 858, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441578

RESUMEN

To compare the performance of artificial intelligence (AI) and Radiographic Assessment of Lung Edema (RALE) scores from frontal chest radiographs (CXRs) for predicting patient outcomes and the need for mechanical ventilation in COVID-19 pneumonia. Our IRB-approved study included 1367 serial CXRs from 405 adult patients (mean age 65 ± 16 years) from two sites in the US (Site A) and South Korea (Site B). We recorded information pertaining to patient demographics (age, gender), smoking history, comorbid conditions (such as cancer, cardiovascular and other diseases), vital signs (temperature, oxygen saturation), and available laboratory data (such as WBC count and CRP). Two thoracic radiologists performed the qualitative assessment of all CXRs based on the RALE score for assessing the severity of lung involvement. All CXRs were processed with a commercial AI algorithm to obtain the percentage of the lung affected with findings related to COVID-19 (AI score). Independent t- and chi-square tests were used in addition to multiple logistic regression with Area Under the Curve (AUC) as output for predicting disease outcome and the need for mechanical ventilation. The RALE and AI scores had a strong positive correlation in CXRs from each site (r2 = 0.79-0.86; p < 0.0001). Patients who died or received mechanical ventilation had significantly higher RALE and AI scores than those with recovery or without the need for mechanical ventilation (p < 0.001). Patients with a more substantial difference in baseline and maximum RALE scores and AI scores had a higher prevalence of death and mechanical ventilation (p < 0.001). The addition of patients' age, gender, WBC count, and peripheral oxygen saturation increased the outcome prediction from 0.87 to 0.94 (95% CI 0.90-0.97) for RALE scores and from 0.82 to 0.91 (95% CI 0.87-0.95) for the AI scores. AI algorithm is as robust a predictor of adverse patient outcome (death or need for mechanical ventilation) as subjective RALE scores in patients with COVID-19 pneumonia.


Asunto(s)
Inteligencia Artificial , COVID-19/diagnóstico , COVID-19/terapia , Respiración Artificial , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico por imagen , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Pronóstico , Tomografía Computarizada por Rayos X , Adulto Joven
6.
Med Image Anal ; 70: 101993, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711739

RESUMEN

In recent years, deep learning-based image analysis methods have been widely applied in computer-aided detection, diagnosis and prognosis, and has shown its value during the public health crisis of the novel coronavirus disease 2019 (COVID-19) pandemic. Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring, particularly in the United States. Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful than a direct image diagnostic model. In this work we develop a novel CXR image retrieval model based on deep metric learning. Unlike traditional diagnostic models which aim at learning the direct mapping from images to labels, the proposed model aims at learning the optimized embedding space of images, where images with the same labels and similar contents are pulled together. The proposed model utilizes multi-similarity loss with hard-mining sampling strategy and attention mechanism to learn the optimized embedding space, and provides similar images, the visualizations of disease-related attention maps and useful clinical information to assist clinical decisions. The model is trained and validated on an international multi-site COVID-19 dataset collected from 3 different sources. Experimental results of COVID-19 image retrieval and diagnosis tasks show that the proposed model can serve as a robust solution for CXR analysis and patient management for COVID-19. The model is also tested on its transferability on a different clinical decision support task for COVID-19, where the pre-trained model is applied to extract image features from a new dataset without any further training. The extracted features are then combined with COVID-19 patient's vitals, lab tests and medical histories to predict the possibility of airway intubation in 72 hours, which is strongly associated with patient prognosis, and is crucial for patient care and hospital resource planning. These results demonstrate our deep metric learning based image retrieval model is highly efficient in the CXR retrieval, diagnosis and prognosis, and thus has great clinical value for the treatment and management of COVID-19 patients.


Asunto(s)
COVID-19/diagnóstico por imagen , Aprendizaje Profundo , Interpretación de Imagen Asistida por Computador , Tomografía Computarizada por Rayos X , Algoritmos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias
7.
Eur J Radiol ; 139: 109583, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33846041

RESUMEN

PURPOSE: As of August 30th, there were in total 25.1 million confirmed cases and 845 thousand deaths caused by coronavirus disease of 2019 (COVID-19) worldwide. With overwhelming demands on medical resources, patient stratification based on their risks is essential. In this multi-center study, we built prognosis models to predict severity outcomes, combining patients' electronic health records (EHR), which included vital signs and laboratory data, with deep learning- and CT-based severity prediction. METHOD: We first developed a CT segmentation network using datasets from multiple institutions worldwide. Two biomarkers were extracted from the CT images: total opacity ratio (TOR) and consolidation ratio (CR). After obtaining TOR and CR, further prognosis analysis was conducted on datasets from INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3. For each data cohort, generalized linear model (GLM) was applied for prognosis prediction. RESULTS: For the deep learning model, the correlation coefficient of the network prediction and manual segmentation was 0.755, 0.919, and 0.824 for the three cohorts, respectively. The AUC (95 % CI) of the final prognosis models was 0.85(0.77,0.92), 0.93(0.87,0.98), and 0.86(0.75,0.94) for INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3 cohorts, respectively. Either TOR or CR exist in all three final prognosis models. Age, white blood cell (WBC), and platelet (PLT) were chosen predictors in two cohorts. Oxygen saturation (SpO2) was a chosen predictor in one cohort. CONCLUSION: The developed deep learning method can segment lung infection regions. Prognosis results indicated that age, SpO2, CT biomarkers, PLT, and WBC were the most important prognostic predictors of COVID-19 in our prognosis model.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Registros Electrónicos de Salud , Humanos , Pulmón , Pronóstico , SARS-CoV-2 , Tomografía Computarizada por Rayos X
8.
Res Sq ; 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33442676

RESUMEN

'Federated Learning' (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays, constituting the "EXAM" (EMR CXR AI Model) model. EXAM achieved an average Area Under the Curve (AUC) of over 0.92, an average improvement of 16%, and a 38% increase in generalisability over local models. The FL paradigm was successfully applied to facilitate a rapid data science collaboration without data exchange, resulting in a model that generalised across heterogeneous, unharmonized datasets. This provided the broader healthcare community with a validated model to respond to COVID-19 challenges, as well as set the stage for broader use of FL in healthcare.

9.
Nat Med ; 27(10): 1735-1743, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34526699

RESUMEN

Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare.


Asunto(s)
COVID-19/fisiopatología , Aprendizaje Automático , Evaluación de Resultado en la Atención de Salud , COVID-19/terapia , COVID-19/virología , Registros Electrónicos de Salud , Humanos , Pronóstico , SARS-CoV-2/aislamiento & purificación
10.
medRxiv ; 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32995811

RESUMEN

PURPOSE: To improve and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different patient populations. MATERIALS AND METHODS: A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity (pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from four test sets, including 3 from the United States (patients hospitalized at an academic medical center (N=154), patients hospitalized at a community hospital (N=113), and outpatients (N=108)) and 1 from Brazil (patients at an academic medical center emergency department (N=303)). Radiologists from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores as a measure of model performance (Pearson r). The Uniform Manifold Approximation and Projection (UMAP) technique was used to visualize the neural network results. RESULTS: Tuning the deep learning model with outpatient data improved model performance in two United States hospitalized patient datasets (r=0.88 and r=0.90, compared to baseline r=0.86). Model performance was similar, though slightly lower, when tested on the United States outpatient and Brazil emergency department datasets (r=0.86 and r=0.85, respectively). UMAP showed that the model learned disease severity information that generalized across test sets. CONCLUSIONS: Performance of a deep learning-based model that extracts a COVID-19 severity score on CXRs improved using training data from a different patient cohort (outpatient versus hospitalized) and generalized across multiple populations.

11.
IEEE J Biomed Health Inform ; 24(12): 3529-3538, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33044938

RESUMEN

Early and accurate diagnosis of Coronavirus disease (COVID-19) is essential for patient isolation and contact tracing so that the spread of infection can be limited. Computed tomography (CT) can provide important information in COVID-19, especially for patients with moderate to severe disease as well as those with worsening cardiopulmonary status. As an automatic tool, deep learning methods can be utilized to perform semantic segmentation of affected lung regions, which is important to establish disease severity and prognosis prediction. Both the extent and type of pulmonary opacities help assess disease severity. However, manually pixel-level multi-class labelling is time-consuming, subjective, and non-quantitative. In this article, we proposed a hybrid weak label-based deep learning method that utilize both the manually annotated pulmonary opacities from COVID-19 pneumonia and the patient-level disease-type information available from the clinical report. A UNet was firstly trained with semantic labels to segment the total infected region. It was used to initialize another UNet, which was trained to segment the consolidations with patient-level information using the Expectation-Maximization (EM) algorithm. To demonstrate the performance of the proposed method, multi-institutional CT datasets from Iran, Italy, South Korea, and the United States were utilized. Results show that our proposed method can predict the infected regions as well as the consolidation regions with good correlation to human annotation.


Asunto(s)
COVID-19/diagnóstico por imagen , Aprendizaje Profundo , Tomografía Computarizada por Rayos X/métodos , Algoritmos , COVID-19/virología , Femenino , Humanos , Masculino , Estudios Retrospectivos , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA