Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Am Chem Soc ; 146(31): 21664-21676, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39058398

RESUMEN

Inspired by the unique functionalities of biomolecular membraneless organelles (MLOs) formed via liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and nucleic acids, a great deal of effort has been devoted to devising phase-separated artificial subcellular dynamic compartments. These endeavors aim to unravel the molecular mechanism underlying the formation and intracellular delivery of susceptible macromolecular therapeutics. We report herein pyroglutamic acid (PGA)-based well-defined homopolymers featuring stimuli-tunable reversible self-coacervation ability. The polymer exhibits an upper critical solution temperature (UCST) transition in aqueous solutions and has the propensity to undergo cooling-induced LLPS, producing micrometer-sized liquid droplets. This phase separation phenomenon could be modulated by various factors, including polymer concentration, chain length, solution pH, and types and concentrations of different additives. These micrometer droplets are thermally reversible and encapsulate a wide variety of cargoes, including small hydrophobic fluorescent molecules, hydrophilic anticancer drugs, and fluorophore-labeled macromolecular proteins (bovine serum albumin and lysozyme). The payloads were released by exploiting the thermo/pH-mediated disassembly behavior of the coacervates, preserving the bioactivity of the sensitive therapeutics. This environmentally responsive, simple yet versatile artificial MLO model system will provide insights into the biomolecular nonionic condensates and pave the way for the de novo design of dynamic biomolecule depots.


Asunto(s)
Enlace de Hidrógeno , Humanos , Albúmina Sérica Bovina/química , Muramidasa/química , Ácido Poliglutámico/química , Ácido Poliglutámico/análogos & derivados , Antineoplásicos/química , Concentración de Iones de Hidrógeno , Liberación de Fármacos , Temperatura , Polímeros/química , Interacciones Hidrofóbicas e Hidrofílicas
2.
Bioconjug Chem ; 35(3): 312-323, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38420925

RESUMEN

Developing effective amyloidosis inhibitors poses a significant challenge due to the dynamic nature of the protein structures, the complex interplay of interfaces in protein-protein interactions, and the irreversible nature of amyloid assembly. The interactions of amyloidogenic polypeptides with other peptides play a pivotal role in modulating amyloidosis and fibril formation. This study presents a novel approach for designing and synthesizing amyloid interaction surfaces using segments derived from the amyloid-promoting sequence of amyloid ß-peptide [VF(Aß(18-19)/FF(Aß(19-20)/LVF(Aß(17-19)/LVFF(Aß(17-20)], where VF, FF, LVF and LVFF stands for valine phenylalanine dipeptide, phenylalanine phenylalanine dipeptide, leucine valine phenylalanine tripeptide and leucine valine phenylalanine phenylalanine tetrapeptide, respectively. These segments are conjugated with side-chain proline-based methacrylate polymers serving as potent lysozyme amyloidosis inhibitors and demonstrating reduced cytotoxicity of amyloid aggregations. Di-, tri-, and tetra-peptide conjugated chain transfer agents (CTAs) were synthesized and used for the reversible addition-fragmentation chain transfer polymerization of tert-butoxycarbonyl (Boc)-proline methacryloyloxyethyl ester (Boc-Pro-HEMA). Deprotection of Boc-groups from the side-chain proline pendants resulted in water-soluble polymers with defined peptide chain ends as peptide-polymer bioconjugates. Among them, the LVFF-conjugated polymer acted as a potent inhibitor with significantly suppressed lysozyme amyloidosis, a finding supported by comprehensive spectroscopic, microscopic, and computational analyses. These results unveil the synergistic effect between the segment-derived amyloid ß-peptide and side-chain proline-based polymers, offering new prospects for targeting lysozyme amyloidosis.


Asunto(s)
Péptidos beta-Amiloides , Amiloidosis , Humanos , Péptidos beta-Amiloides/química , Prolina , Leucina , Polímeros/química , Muramidasa , Amiloidosis/tratamiento farmacológico , Amiloidosis/metabolismo , Amiloide , Dipéptidos/farmacología , Fenilalanina , Valina
3.
Langmuir ; 40(10): 5314-5325, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408899

RESUMEN

Zwitterionic polymers are an emerging family of effective, low-fouling materials that can withstand unintended interactions with biological systems while exhibiting enhanced activity in bacterial matrix deterioration and biofilm eradication. Herein, we modularly synthesized an amphiphilic block copolymer, ZABCP, featuring potential bacteriostatic properties composed of a charge-switchable polyzwitterionic segment and a redox-sensitive pendant disulfide-labeled polymethacrylate block. The leucine-appended polyzwitterionic segment with alternatively positioned cationic amine and anionic carboxylate functionalities undergoes charge alterations (+ve → 0 → -ve) on pH variation. By introducing appropriate amphiphilicity, ZABCP forms distinct vesicles with redox-sensitive bilayer membranes and zwitterionic shielding coronas, enabling switching of surface charge. ZABCP vesicles exhibit 180 ± 20 nm hydrodynamic diameter, and its charge switching behavior in response to pH was confirmed by the change of zeta potential value from -23 to +36 mV. The binding interaction between ZABCP vesicles with lysozyme and pepsin proteins strengthens when the surface charge shifts from neutral (pH 7.4) to either anionic or cationic. This surface-charge-switchable phenomenon paves the way for implementing cationic ZABCP vesicles for bacterial cell growth inhibition, which is shown by the pronounced transition of cellular morphology, including clustering, aggregation, or elongation as well as membrane disruption for both Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative). Such enhanced bacteriostatic activity could be ascribed to a strong electrostatic interaction between cationic vesicles and negatively charged bacterial membranes, leading to cell membrane disruption. Overall, this study provides a tailor-made approach to adopt low-fouling properties and potential bacteriostatic activity using zwitterionic polymers through precise control of pH.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Proteínas/metabolismo , Cationes/química , Membrana Celular/metabolismo , Polímeros/química , Propiedades de Superficie
4.
Biomacromolecules ; 25(9): 5592-5608, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39116284

RESUMEN

Nitric oxide (NO), a gasotransmitter, is known for its wide range of effects in vasodilation, cardiac relaxation, and angiogenesis. This diatomic free radical also plays a pivotal role in reducing the risk of platelet aggregation and thrombosis. Furthermore, NO demonstrates promising potential in cancer therapy as well as in antibacterial and antibiofilm activities at higher concentrations. To leverage their biomedical activities, numerous NO donors have been developed. Among these, N-nitrosamines are emerging as a notable class, capable of releasing NO under suitable photoirradiation and finding a broad range of therapeutic applications. This review discusses the design, synthesis, and biological applications of polymeric N-nitrosamines, highlighting their advantages over small molecular NO donors in terms of stability, NO payload, and target-specific delivery. Additionally, various small-molecule N-nitrosamines are explored to provide a comprehensive overview of this burgeoning field. We anticipate that this review will aid in developing next-generation polymeric N-nitrosamines with improved physicochemical properties.


Asunto(s)
Donantes de Óxido Nítrico , Óxido Nítrico , Nitrosaminas , Polímeros , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Humanos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitrosaminas/química , Polímeros/química , Animales , Neoplasias/tratamiento farmacológico
5.
Biomacromolecules ; 25(3): 1978-1988, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38345926

RESUMEN

The rational design of precisely controlled hierarchical chiral nanostructures from synthetic polymers garnered inspiration from sophisticated biological materials. Since chiral peptide motifs induce helix formation in macromolecules, herein we report the synthesis of a novel type of hybrid polymer consisting of a ß-sheet forming a LVF [L = leucine, V = valine, and F = phenylalanine] tripeptide pendant polymethacrylate block and a poly[poly(ethylene glycol) methyl ether methacrylate] (PPEGMA) block. The designed block copolymer self-organized into helical superstructures with a left-handed twisting sense, as visualized by field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. This intriguing hierarchical self-assembly is driven by the minimalistic peptide motif that itself has a high propensity to adopt an antiparallel ß-sheet conformation. We also report the generation of a diverse array of nanostructures, including spherical micelles, spindle micelles, rod-like micelles, vesicles, helical supramolecular fibers, and helical toroids via self-assembly of the designed block copolymer in tetrahydrofuran/water mixed solvents. To realize the observable helical superstructure, a twisted two-dimensional core-shell tape is proposed as a structure model in which the peptide segments form an antiparallel ß-sheet with a polymer shell. The findings contribute to the advancement of a helical polymer or the superhelical self-assembly of polymers, paving the way for diverse applications in materials science and related fields.


Asunto(s)
Metacrilatos , Micelas , Polímeros , Polímeros/química , Polietilenglicoles/química , Péptidos beta-Amiloides
6.
Biomacromolecules ; 25(7): 4233-4245, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38838045

RESUMEN

In the area of drug delivery aided by stimuli-responsive polymers, the biodegradability of nanocarriers is one of the major challenges that needs to be addressed with the utmost sincerity. Herein, a hydrogen sulfide (H2S) responsive hydrophobic dansyl-based trigger molecule is custom designed and successfully incorporated into the water-soluble polyurethane backbone, which is made of esterase enzyme susceptible urethane bonds. The amphiphilic polyurethanes, PUx (x = 2 and 3) with a biotin chain end, formed self-assembled nanoaggregates. A hemolysis and cytotoxicity profile of doxorubicin (DOX)-loaded biotinylated PU3 nanocarriers revealed that it is nonhemolytic and has excellent selectivity toward HeLa cells (biotin receptor-positive cell lines) causing ∼60% cell death while maintaining almost 100% cell viability for HEK 293T cells (biotin receptor-negative cell lines). Furthermore, better cellular internalization of DOX-loaded fluorescent nanocarriers in HeLa cells than in HEK 293T cells confirmed receptor-mediated endocytosis. Thus, this work ensures that the synthesized polymers serve as biodegradable nanocarriers for anticancer therapeutics.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Poliuretanos , Humanos , Poliuretanos/química , Células HeLa , Doxorrubicina/farmacología , Doxorrubicina/química , Células HEK293 , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Nanomedicina Teranóstica/métodos , Biotinilación , Biotina/química , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química
7.
Biomacromolecules ; 25(3): 1649-1659, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38331427

RESUMEN

Overproduction of reactive oxygen species (ROS) in cells is a major health concern as it may lead to various diseases through oxidative damage of biomolecules. Commonly used traditional small molecular antioxidants (polyphenols, carotenoids, vitamins, etc.) have inadequate efficacy in lowering excessive levels of ROS due to their poor aqueous solubility and bioavailability. In response to the widespread occurrence of antioxidant polyphenols in various biorenewable resources, we aimed to develop water-soluble antioxidant polymers with side chain phenolic pendants. Four different types of copolymers (P1-P4) containing phenyl rings with different numbers of hydroxy (-OH) substituents (0: phenylalanine, 1: tyrosyl, 2: catechol, or 3: gallol) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization with a desired molar mass (8500-10000 g/mol) and a narrow dispersity (D ≤ 1.3). After successful characterizations of P1-P4, their in vitro antioxidant properties were analyzed by different methods, including 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+), 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl (TMB), and ß-carotene (ßC) assays. Our results revealed that the gallol pendant polymers can effectively scavenge ROS. Furthermore, electron paramagnetic resonance (EPR) spectroscopy with DPPH• also confirmed the radical quenching ability of the synthesized polymers. The gallol pendant polymers, at a well-tolerated concentration, could effectively penetrate the macrophage cells and restore the H2O2-induced ROS to the basal level. Overall, the present approach demonstrates the efficacy of water-soluble antioxidant polymers with gallol pendants toward the mitigation of cellular oxidative stress.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Antioxidantes/farmacología , Antioxidantes/química , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Fenoles/farmacología , Polifenoles/farmacología , Agua
8.
Biomacromolecules ; 25(1): 77-88, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38048403

RESUMEN

N-Nitrosamines are well established motifs to release nitric oxide (NO) under photoirradiation. Herein, a series of amphiphilic N-nitrosamine-based block copolymers (BCPx-NO) are developed to attain controlled NO release under photoirradiation (365 nm, 3.71 mW/cm2). The water-soluble BCPx-NO forms micellar architecture in aqueous medium and exhibits a sustained NO release of 92-160 µM within 11.5 h, which is 36.8-64.0% of the calculated value. To understand the NO release mechanism, a small molecular NO donor (NOD) resembling the NO releasing functional motif of BCPx-NO is synthesized, which displays a burst NO release in DMSO within 2.5 h. The radical nature of the released NO is confirmed by electron paramagnetic resonance (EPR) spectroscopy. The gradual NO release from micellar BCPx-NO enhances antibacterial activity over NOD and exhibits a superior bactericidal effect on Gram-positive Staphylococcus aureus. In relation to biomedical applications, this work offers a comprehensive insight into tuning light-triggered NO release to improve antibacterial activity.


Asunto(s)
Óxido Nítrico , Staphylococcus aureus , Óxido Nítrico/química , Polímeros/farmacología , Micelas , Antibacterianos/farmacología , Antibacterianos/química
9.
Biomacromolecules ; 25(8): 5068-5080, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39041235

RESUMEN

Enzyme-responsive self-assembled nanostructures for drug delivery applications have gained a lot of attention, as enzymes exhibit dysregulation in many disease-associated microenvironments. Azoreductase enzyme levels are strongly elevated in many tumor tissues; hence, here, we exploited the altered enzyme activity of the azoreductase enzyme and designed a main-chain azobenzene-based amphiphilic polyurethane, which self-assembles into a vesicular nanostructure and is programmed to disassemble in response to a specific enzyme, azoreductase, with the help of the nicotinamide adenine dinucleotide phosphate (NADPH) coenzyme in the hypoxic environment of solid tumors. The vesicular nanostructure sequesters, stabilizes the hydrophobic anticancer drug, and releases the drug in a controlled fashion in response to enzyme-triggered degradation of azo-bonds and disruption of vesicular assembly. The biological evaluation revealed tumor extracellular matrix pH-induced surface charge modulation, selective activated cellular uptake to azoreductase overexpressed lung cancer cells (A549), and the release of the anticancer drug followed by cell death. In contrast, the benign nature of the drug-loaded vesicular nanostructure toward normal cells (H9c2) suggested excellent cell specificity. We envision that the main-chain azobenzene-based polyurethane discussed in this manuscript could be considered as a possible selective chemotherapeutic cargo against the azoreductase overexpressed cancer cells while shielding the normal cells from off-target toxicity.


Asunto(s)
Antineoplásicos , Compuestos Azo , Nitrorreductasas , Poliuretanos , Compuestos Azo/química , Compuestos Azo/farmacología , Humanos , Poliuretanos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Células A549 , Nitrorreductasas/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Liberación de Fármacos , Nanoestructuras/química , Sistemas de Liberación de Medicamentos/métodos
10.
Sci Technol Adv Mater ; 23(1): 49-63, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185388

RESUMEN

Formaldehyde is a well-known industrial material regularly used in fishery, vegetable markets, and fruit shops for maintaining their freshness. But due to its carcinogenic nature and other toxic effects, it is very important to detect it in very low concentrations. In recent years, amine-containing fluorescent probes have gained significant attention for designing formaldehyde sensors. However, the major drawbacks of these small molecular probes are low sensitivity and long exposure time, which limits their real-life applications. In this regard, polymeric probes have gained significant attention to overcome the aforementioned problems. Several polymeric probes have been utilized as a coating material, nanoparticle, quartz crystal microbalance (QCM), etc., for the selective and sensitive detection of formaldehyde. The main objective of this review article is to comprehensively describe the recent advancements in formaldehyde sensors based on small molecules and polymers, and their successful applications in various fields, especially in situ formaldehyde sensing in biological systems.

11.
Mol Pharm ; 18(9): 3181-3205, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34433264

RESUMEN

Gasotransmitters belong to the subfamily of endogenous gaseous signaling molecules, which find a wide range of biomedical applications. Among the various gasotransmitters, nitric oxide (NO) has an enormous effect on the cardiovascular system. Apart from this, NO showed a pivotal role in neurological, respiratory, and immunological systems. Moreover, the paradoxical concentration-dependent activities make this gaseous signaling molecule more interesting. The gaseous NO has negligible stability in physiological conditions (37 °C, pH 7.4), which restricts their potential therapeutic applications. To overcome this issue, various NO delivering carriers were reported so far. Unfortunately, most of these NO donors have low stability, short half-life, or low NO payload. Herein, we review the synthesis of NO delivering motifs, development of macromolecular NO donors, their advantages/disadvantages, and biological applications. Various NO detection analytical techniques are discussed briefly, and finally, a viewpoint about the design of polymeric NO donors with improved physicochemical characteristics is predicted.


Asunto(s)
Portadores de Fármacos/química , Gasotransmisores/análisis , Donantes de Óxido Nítrico/administración & dosificación , Óxido Nítrico/análisis , Diseño de Fármacos , Gasotransmisores/metabolismo , Semivida , Humanos , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacocinética , Polímeros/química
12.
Biomacromolecules ; 22(11): 4833-4845, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34674527

RESUMEN

To understand the effect of cholic acid (CA)-based charge variable polymeric architectures on modulating the insulin aggregation process, herein, we have designed side-chain cholate-containing charge variable polymers. Three different types of copolymers from 2-(methacryloyloxy)ethyl cholate with anionic or cationic or neutral units have been synthesized by reversible addition-fragmentation chain transfer polymerization. The effects of these copolymers on the insulin fibrillation process was studied by multiple biophysical approaches including different types of spectroscopic and microscopic analyses. Interestingly, the CA-based cationic polymer (CP-10) was observed to inhibit the insulin fibrillation process in a dose-dependent manner and to act as an effective anti-amyloidogenic agent. Corresponding anionic (AP-10) and neutral (NP-10) copolymers with cholate pendants remained insignificant in controlling the aggregation process. Tyrosine fluorescence assays and Nile red fluorescence measurements demonstrate the role of hydrophobic interaction to explain the inhibitory potencies of CP-10. Furthermore, circular dichroism spectroscopic measurements were carried out to explore the secondary structural changes of insulin fibrils in the presence of cationic polymers with and without cholate moieties. Isothermal titration calorimetry measurements revealed the involvement of electrostatic polar interaction between the CA-based cationic polymer and insulin at different stages of fibrillation. Overall, this work demonstrates the efficacy of the CA-based cationic polymer in controlling the insulin aggregation process and provides a novel dimension to the studies on protein aggregation.


Asunto(s)
Insulina , Polímeros , Cationes , Ácido Cólico , Polimerizacion
13.
Macromol Rapid Commun ; 42(23): e2100501, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34597451

RESUMEN

Alternating sequencing of styrene-maleimide/maleic anhydride (S-MI/MA) in the copolymer chain is known for a long time. But since early 2000, this class of copolymers has been extensively studied using various living/controlled polymerization techniques to design S-MI/MA alternating copolymers with tunable molecular weight, narrow dispersity (Ð), and precise chain-end functionality. The widespread diverse applications of this polymeric backbone are due to its ease of synthesis, cheap starting materials, high precision in alternating sequencing, and facile post-polymerization functionalization with simple organic reactions. Recently, S-MI/MA alternating copolymers have been rediscovered as novel polymers with unprecedented emissive behavior. It outperforms the traditional fluorophores with no aggregation caused quenching (ACQ), aqueous solubility, and greater cell viability. Herein, the origin of alternating sequence, synthesis, and recent (2010-Present) developments in applications of these polymers in different fields are elaborately discussed, including the advantages of the unconventional luminogenic property. This review article also highlights the future research directions of the versatile S-MI/MA copolymers.


Asunto(s)
Anhídridos Maleicos , Polímeros , Maleimidas , Polimerizacion , Agua
14.
Bioconjug Chem ; 30(1): 218-230, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30516978

RESUMEN

The design of a new drug material through modification of some well-known antibiotics to combat pathogenic bacteria must include a complete understanding of matrix regulation because the human body consists of primarily three types of matrices, that is, solid, semisolid, and liquid, all of which have a tendency to regulate antibacterial efficacy along with the bactericidal mechanism of several antimicrobial agents. Herein, matrix-dependent action of ciprofloxacin-based polymeric hydrogel scaffold was explored against a new species of Vibrio, namely, Vibrio chemaguriensis Iso1 ( V. chemaguriensis), which is resistant to most of the common antibiotics and possess genes that can be linked to pathogenicity. Ciprofloxacin was attached to the polymeric system consisting of hydrophilic polyethylene glycol methyl ether methacrylate (PEGMA) and zwitterionic sulphabetaine methacrylate (SBMA) with an antifouling nature via covalent linkage leading to effective polymer antibiotic conjugates (PACs) with linear and hyperbranched architectures. The hyperbranched PAC was transformed to a polymeric gel exhibiting greater antibacterial efficacy in solid matrix than that of the liquid one with a complete bactericidal effect and rod to spherical switching of bacterial cell followed by chain formation via "dual" contact activity and release mechanism through sustained removal of thiol-terminated ciprofloxacin fragment along with an equilibrium swelling and deswelling process. Lower killing efficacy was displayed in the liquid matrix with an intact cell morphology that is due to lack of forced contact between the cell wall and gel surface as well as entrapment of released bioactive fragment via an additional thick exopolysaccharide (EPS) layer, which represents a great challenge to modern medical sciences.


Asunto(s)
Antibacterianos/farmacología , Ciprofloxacina/farmacología , Hidrogeles/química , Vibrio/efectos de los fármacos , Antibacterianos/química , Ciprofloxacina/química , Difusión , Escherichia coli/efectos de los fármacos , Humanos , Staphylococcus aureus/efectos de los fármacos
15.
Biomacromolecules ; 20(1): 546-557, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30521313

RESUMEN

Delivery of clinically approved nonfluorescent drugs is facing challenges because it is difficult to monitor the intracellular drug delivery without incorporating any integrated fluorescence moiety into the drug carrier. The present investigation reports the synthesis of a pH-responsive autofluorescent polymeric nanoscaffold for the administration of nonfluorescent aromatic nitrogen mustard chlorambucil (CBL) drug into the cancer cells. Copolymerization of poly(ethylene glycol) (PEG) appended styrene and CBL conjugated N-substituted maleimide monomers enables the formation of well-defined luminescent alternating copolymer. These amphiphilic brush copolymers self-organized in aqueous medium into 25-68 nm nanoparticles, where the CBL drug is enclosed into the core of the self-assembled nanoparticles. In vitro studies revealed ∼70% drug was retained under physiological conditions at pH 7.4 and 37 °C. At endolysosomal pH 5.0, 90% of the CBL was released by the pH-induced cleavage of the aliphatic ester linkages connecting CBL to the maleimide unit. Although the nascent nanoparticle (without drug conjugation) is nontoxic, the drug conjugated nanoparticle showed higher toxicity and superior cell killing capability in cervical cancer (HeLa) cells rather than in normal cells. Interestingly, the copolymer without any conventional chromophore exhibited photoluminescence under UV light irradiation due to the presence of "through-space" π-π interaction between the C═O group of maleimide unit and the adjacent benzene ring of the styrenic monomer. This property helped us intracellular tracking of CBL conjugated autofluorescent nanocarriers through fluorescence microscope imaging. Finally, the 4-(4-nitrobenzyl)pyridine (NBP) colorimetric assay was executed to examine the ability of CBL-based polymeric nanomaterials toward alkylation of DNA.


Asunto(s)
Antineoplásicos Alquilantes/administración & dosificación , Clorambucilo/administración & dosificación , Nanoconjugados/química , Polímeros de Estímulo Receptivo/química , Antineoplásicos Alquilantes/química , Clorambucilo/química , Liberación de Fármacos , Células HEK293 , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Luminiscencia , Células MCF-7 , Maleimidas/química , Polietilenglicoles/química , Tensoactivos/química
16.
Biomacromolecules ; 19(6): 2286-2293, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29669206

RESUMEN

ß-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose and is a rate-limiting enzyme in the conversion of lignocellulosic biomass to sugars toward biofuels. Since the cost of enzyme is a major contributor to biofuel economics, we report the bioconjugation of a temperature-responsive polymer with the highly active thermophilic ß-glucosidase (B8CYA8) from Halothermothrix orenii toward improving enzyme recyclability. The bioconjugate, with a lower critical solution temperature (LCST) of 33 °C withstands high temperatures up to 70 °C. Though the secondary structure of the enzyme in the conjugate is slightly distorted with a higher percentage of ß-sheet like structure, the stability and specific activity of B8CYA8 in the conjugate remains unaltered up to 30 °C and retains more than 70% specific activity of the unmodified enzyme at 70 °C. The conjugate can be reused for ß-glucosidic bond cleavage of cellobiose for at least four cycles without any significant loss in specific activity.


Asunto(s)
Proteínas Bacterianas/química , Celulosa/química , Enzimas Inmovilizadas/química , Firmicutes/enzimología , Calor , beta-Glucosidasa/química , Estabilidad de Enzimas , Hidrólisis
17.
Chemistry ; 23(60): 15156-15165, 2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-28850744

RESUMEN

Poly[2-(methacryloyloxy)ethyl oleate-co-pentafluorophenyl methacrylate] [P(MAEO-co-PFPMA)] random copolymers with oleate and pentafluorophenyl side-chain pendants were synthesized. These copolymers were utilized as dual-reactive polymeric scaffolds in a range of post-polymerization modification strategies involving thiol-ene and para-fluoro-thiol substitution, amidation, trans-esterification, and epoxidation followed by amidation. The 2-(methacryloyloxy)ethyl oleate (MAEO) functional handle in the copolymer is open to functionalization at its internal double bond through thermally initiated thiol-ene reaction, whereas the pentafluorophenyl moiety of the pentafluorophenyl methacrylate (PFPMA) unit undergoes para-fluoro-thiol substitution under basic conditions at room temperature. By means of these modification approaches, the P(MAEO-co-PFPMA) copolymer was orthogonally ligated with thiol compounds having, for example, alkyl, hydroxyl, and protected amine functional groups. Furthermore, different functional groups such as benzyl, allyl, methacrylate, pyrene, and water-soluble poly(ethylene glycol) were easily introduced into the side chain of the P(MAEO-co-PFPMA) copolymer by amidation, trans-esterification, and epoxidation followed by amidation. Functionalization of both the reactive pendants with the various organic substituents was confirmed by 1 H and 19 F NMR spectroscopy, gel permeation chromatography, and fluorescence spectroscopy.

18.
Langmuir ; 33(40): 10588-10597, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28918640

RESUMEN

Supramolecular host-guest interactions between randomly methylated ß-cyclodextrin (RM ß-CD) and side-chain phenylalanine (Phe) and Phe-Phe dipeptide-based homopolymers have been employed for the amplification of fluorescence emission of otherwise weakly fluorescent amino acid Phe. The host-guest complex has been characterized by 1H and 13C NMR spectroscopy, two-dimensional rotating-frame overhauser spectroscopy, Fourier-transform infrared spectroscopy, UV-visible spectroscopy, and fluorescence spectroscopy. To gain insights into the origin of fluorescence in homopolymers, density functional theory calculations were performed where phenyl moieties inside the less polar core of ß-CD were observed to form a π-π coupled complex resulting in an enhanced emission. Furthermore, the complex-forming ability of Phe, the guest molecule, has been employed in tuning the cloud point temperature (TCP) of statistical copolymers derived from side-chain Phe/Phe-Phe-based methacrylate monomers and N-isopropylacrylamide. By varying the co-monomer feed ratios in the statistical copolymer and hence the concentration of RM ß-CD throughout the polymer chain, host-guest interaction-assisted broad tunability in TCP of the supramolecular polymeric complex has been achieved.


Asunto(s)
Fenilalanina/química , Sustancias Macromoleculares , Polímeros , Espectrometría de Fluorescencia , Temperatura
19.
Phys Chem Chem Phys ; 19(26): 17360-17365, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28650042

RESUMEN

Understanding the changes in the macro-structure of amphiphilic pH-responsive polymers remains a relevant issue due to their potential use as drug delivery carriers. Since some of the amphiphilic polymers are known to exchange hydrogen ions with an aqueous solvent, we monitor the effective change of the surface to volume ratio of such polymer aggregates using solution-state nuclear magnetic resonance (NMR) spectroscopy. The surface to volume ratio with the help of UV-visible spectroscopy is shown to yield the average diameter of the polymer aggregates. We show that the proposed method not only satisfactorily corroborates the existing notions of how the aggregation of these polymers takes place as a function of pH, but also provides a quantitative estimate of the size of the aggregates.

20.
Macromol Rapid Commun ; 37(13): 1015-20, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27159378

RESUMEN

Recently, polymer drug conjugates (PDCs) have attracted considerable attention in the treatment of cancer. In this work, a simple strategy has been developed to make PDCs of an antitumor alkylating agent, chlorambucil, using a biocompatible disulphide linker. Chlorambucil-based chain transfer agent was used to prepare various homopolymers and block copolymers in a controlled fashion via reversible addition-fragmentation chain transfer polymerization. Chlorambucil conjugated block copolymer, poly(polyethylene glycol monomethyl ether methacrylate)-b-poly(methyl methacrylate), formed nanoaggregates in aqueous solutions, which are characterized by dynamic light scattering and field emission-scanning electron microscopy. Finally, the simplicity of the design is exemplified by performing a release study of chlorambucil under reducing condition by using D,L-dithiothreitol.


Asunto(s)
Antineoplásicos Alquilantes/química , Clorambucilo/química , Sistemas de Liberación de Medicamentos , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA