Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Radiother Oncol ; 197: 110368, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38834153

RESUMEN

BACKGROUND AND PURPOSE: To optimize our previously proposed TransRP, a model integrating CNN (convolutional neural network) and ViT (Vision Transformer) designed for recurrence-free survival prediction in oropharyngeal cancer and to extend its application to the prediction of multiple clinical outcomes, including locoregional control (LRC), Distant metastasis-free survival (DMFS) and overall survival (OS). MATERIALS AND METHODS: Data was collected from 400 patients (300 for training and 100 for testing) diagnosed with oropharyngeal squamous cell carcinoma (OPSCC) who underwent (chemo)radiotherapy at University Medical Center Groningen. Each patient's data comprised pre-treatment PET/CT scans, clinical parameters, and clinical outcome endpoints, namely LRC, DMFS and OS. The prediction performance of TransRP was compared with CNNs when inputting image data only. Additionally, three distinct methods (m1-3) of incorporating clinical predictors into TransRP training and one method (m4) that uses TransRP prediction as one parameter in a clinical Cox model were compared. RESULTS: TransRP achieved higher test C-index values of 0.61, 0.84 and 0.70 than CNNs for LRC, DMFS and OS, respectively. Furthermore, when incorporating TransRP's prediction into a clinical Cox model (m4), a higher C-index of 0.77 for OS was obtained. Compared with a clinical routine risk stratification model of OS, our model, using clinical variables, radiomics and TransRP prediction as predictors, achieved larger separations of survival curves between low, intermediate and high risk groups. CONCLUSION: TransRP outperformed CNN models for all endpoints. Combining clinical data and TransRP prediction in a Cox model achieved better OS prediction.


Asunto(s)
Neoplasias Orofaríngeas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Neoplasias Orofaríngeas/mortalidad , Neoplasias Orofaríngeas/diagnóstico por imagen , Neoplasias Orofaríngeas/patología , Neoplasias Orofaríngeas/radioterapia , Neoplasias Orofaríngeas/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Redes Neurales de la Computación , Adulto
2.
Comput Biol Med ; 177: 108675, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820779

RESUMEN

BACKGROUND: The different tumor appearance of head and neck cancer across imaging modalities, scanners, and acquisition parameters accounts for the highly subjective nature of the manual tumor segmentation task. The variability of the manual contours is one of the causes of the lack of generalizability and the suboptimal performance of deep learning (DL) based tumor auto-segmentation models. Therefore, a DL-based method was developed that outputs predicted tumor probabilities for each PET-CT voxel in the form of a probability map instead of one fixed contour. The aim of this study was to show that DL-generated probability maps for tumor segmentation are clinically relevant, intuitive, and a more suitable solution to assist radiation oncologists in gross tumor volume segmentation on PET-CT images of head and neck cancer patients. METHOD: A graphical user interface (GUI) was designed, and a prototype was developed to allow the user to interact with tumor probability maps. Furthermore, a user study was conducted where nine experts in tumor delineation interacted with the interface prototype and its functionality. The participants' experience was assessed qualitatively and quantitatively. RESULTS: The interviews with radiation oncologists revealed their preference for using a rainbow colormap to visualize tumor probability maps during contouring, which they found intuitive. They also appreciated the slider feature, which facilitated interaction by allowing the selection of threshold values to create single contours for editing and use as a starting point. Feedback on the prototype highlighted its excellent usability and positive integration into clinical workflows. CONCLUSIONS: This study shows that DL-generated tumor probability maps are explainable, transparent, intuitive and a better alternative to the single output of tumor segmentation models.


Asunto(s)
Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Humanos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Interfaz Usuario-Computador , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA