Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(10): 1315-1326, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37078409

RESUMEN

The bacterial product CNF1, through its action on the Rho GTPases, is emerging as a modulator of crucial signalling pathways involved in selected neurological diseases characterized by mitochondrial dysfunctions. Mitochondrial impairment has been hypothesized to have a key role in paramount mechanisms underlying Rett syndrome (RTT), a severe neurologic rare disorder. CNF1 has been already reported to have beneficial effects in mouse models of RTT. Using human RTT fibroblasts from four patients carrying different mutations, as a reliable disease-in-a-dish model, we explored the cellular and molecular mechanisms, which can underlie the CNF1-induced amelioration of RTT deficits. We found that CNF1 treatment modulates the Rho GTPases activity of RTT fibroblasts and induces a considerable re-organization of the actin cytoskeleton, mainly in stress fibres. Mitochondria of RTT fibroblasts show a hyperfused morphology and CNF1 decreases the mitochondrial mass leaving substantially unaltered the mitochondrial dynamic. From a functional perspective, CNF1 induces mitochondrial membrane potential depolarization and activation of AKT in RTT fibroblasts. Given that mitochondrial quality control is altered in RTT, our results are suggestive of a reactivation of the damaged mitochondria removal via mitophagy restoration. These effects can be at the basis of the beneficial effects of CNF1 in RTT.


Asunto(s)
Proteínas de Escherichia coli , Síndrome de Rett , Ratones , Animales , Humanos , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proyectos Piloto , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacología , Mitocondrias/metabolismo , Fibroblastos/metabolismo
2.
Eur J Neurosci ; 55(9-10): 2766-2776, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33655553

RESUMEN

Stress vulnerability is a critical factor for the development of trauma-related disorders; however, its biological underpinnings are not clear. We demonstrated that dysfunctions in the X-linked epigenetic factor methyl-CpG binding protein 2 (MeCP2) provide trauma vulnerability in male mice. Given the prominent role of sex in stress outcomes, we explored the effects of MeCP2 hypofunctionality in females. Female mice carrying truncated MeCP2 (heterozygous and homozygous) and wild type controls (wt) were tested for fear memory. Stress-induced corticosterone release and brain expression of hypothalamic-pituitary-adrenal (HPA) axis regulatory genes were also evaluated in wt and mutant mice of both sexes. Although heterozygous females displayed a normal stress-related behavioural profile, homozygous mice showed enhanced memory recall for the threatening context compared to wt, thus recapitulating the phenotype previously evidenced in hemizygous males. Interestingly, MeCP2 truncation abolished the sex differences in stress-induced corticosterone release, which was found increased in mutant males, whereas blunted in mutant females in a zygosity-independent manner. Although heterozygous mice did not differ from controls, homozygous females and hemizygous males showed increased hypotalamic Crh and Avp mRNAs and a differentially altered expression of Fkbp5 in cortical areas. Present results demonstrate that in female mice carrying truncated MeCP2, altered stress responsivity is driven by homozygosity, whereas heterozygosity does not lead to maladaptive stress outcomes. MeCP2 dysfunctions thus provide stress vulnerability in mice with sex- and zygosity-dependent outcomes.


Asunto(s)
Corticosterona , Sistema Hipófiso-Suprarrenal , Animales , Corticosterona/metabolismo , Femenino , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Memoria , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Caracteres Sexuales
3.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201747

RESUMEN

Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene and a major cause of intellectual disability in females. No cure exists for RTT. We previously reported that the behavioural phenotype and brain mitochondria dysfunction are widely rescued by a single intracerebroventricular injection of the bacterial toxin CNF1 in a RTT mouse model carrying a truncating mutation of the MeCP2 gene (MeCP2-308 mice). Given the heterogeneity of MECP2 mutations in RTT patients, we tested the CNF1 therapeutic efficacy in a mouse model carrying a null mutation (MeCP2-Bird mice). CNF1 selectively rescued cognitive defects, without improving other RTT-related behavioural alterations, and restored brain mitochondrial respiratory chain complex activity in MeCP2-Bird mice. To shed light on the molecular mechanisms underlying the differential CNF1 effects on the behavioural phenotype, we compared treatment effects on relevant signalling cascades in the brain of the two RTT models. CNF1 provided a significant boost of the mTOR activation in MeCP2-308 hippocampus, which was not observed in the MeCP2-Bird model, possibly explaining the differential effects of CNF1. These results demonstrate that CNF1 efficacy depends on the mutation beared by MeCP2-mutated mice, stressing the need of testing potential therapeutic approaches across RTT models.


Asunto(s)
Toxinas Bacterianas/farmacología , Encéfalo/efectos de los fármacos , Proteínas de Escherichia coli/farmacología , Proteína 2 de Unión a Metil-CpG/genética , Mitocondrias/efectos de los fármacos , Síndrome de Rett/tratamiento farmacológico , Animales , Toxinas Bacterianas/administración & dosificación , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Proteínas de Escherichia coli/administración & dosificación , Miedo/efectos de los fármacos , Femenino , Infusiones Intraventriculares , Mutación con Pérdida de Función , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Ratones Mutantes , Proteínas de Microfilamentos/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Síndrome de Rett/etiología , Serina-Treonina Quinasas TOR/metabolismo
4.
Mediators Inflamm ; 2017: 9467819, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28592917

RESUMEN

Rett syndrome (RTT) is a rare neurodevelopmental disorder usually caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Several Mecp2 mutant mouse lines have been developed recapitulating part of the clinical features. In particular, Mecp2-308 female heterozygous mice, bearing a truncating mutation, are a validated model of the disease. While recent data suggest a role for inflammation in RTT, little information on the inflammatory status in murine models of the disease is available. Here, we investigated the inflammatory status by proteomic 2-DE/MALDI-ToF/ToF analyses in symptomatic Mecp2-308 female mice. Ten differentially expressed proteins were evidenced in the Mecp2-308 mutated plasma proteome. In particular, 5 positive acute-phase response (APR) proteins increased (i.e., kininogen-1, alpha-fetoprotein, mannose-binding protein C, alpha-1-antitrypsin, and alpha-2-macroglobulin), and 3 negative APR reactants were decreased (i.e., serotransferrin, albumin, and apolipoprotein A1). CD5 antigen-like and vitamin D-binding protein, two proteins strictly related to inflammation, were also changed. These results indicate for the first time a persistent unresolved inflammation of unknown origin in the Mecp2-308 mouse model.


Asunto(s)
Inflamación/inmunología , Inflamación/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/inmunología , Síndrome de Rett/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Proteómica
5.
Neural Plast ; 2015: 326184, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26185689

RESUMEN

Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases. Motor abnormalities represent a significant part of the spectrum of RTT symptoms. In the present study we investigated motor coordination and fine motor skill domains in MeCP2-308 female mice, a validated RTT model. This was complemented by the in vivo magnetic resonance spectroscopy (MRS) analysis of metabolic profile in behaviourally relevant brain areas. MeCP2-308 heterozygous female mice (Het, 10-12 months of age) were impaired in tasks validated for the assessment of purposeful and coordinated forepaw use (Morag test and Capellini handling task). A fine-grain analysis of spontaneous behaviour in the home-cage also revealed an abnormal handling pattern when interacting with the nesting material, reduced motivation to explore the environment, and increased time devoted to feeding in Het mice. The brain MRS evaluation highlighted decreased levels of bioenergetic metabolites in the striatal area in Het mice compared to controls. Present results confirm behavioural and brain alterations previously reported in MeCP2-308 males and identify novel endpoints on which the efficacy of innovative therapeutic strategies for RTT may be tested.


Asunto(s)
Miembro Anterior , Destreza Motora , Síndrome de Rett/psicología , Animales , Conducta Animal , Peso Corporal/genética , Química Encefálica/fisiología , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Genotipo , Espectroscopía de Resonancia Magnética , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Motivación , Neostriado/metabolismo , Comportamiento de Nidificación , Desempeño Psicomotor , Síndrome de Rett/genética
6.
Neurobiol Dis ; 68: 66-77, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24769161

RESUMEN

Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.


Asunto(s)
Lesiones Encefálicas/etiología , Proteína 2 de Unión a Metil-CpG/genética , Mutación/genética , Estrés Oxidativo/fisiología , Síndrome de Rett/complicaciones , Síndrome de Rett/genética , Aldehídos/metabolismo , Análisis de Varianza , Animales , Ácido Araquidónico/metabolismo , Lesiones Encefálicas/sangre , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas , Isoprostanos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nestina/genética , Neuroprostanos/metabolismo , Síndrome de Rett/sangre
7.
Anal Biochem ; 444: 25-31, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24018341

RESUMEN

Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses.


Asunto(s)
Encéfalo/citología , Criopreservación , Mitocondrias/fisiología , Animales , Femenino , Ratones , Membranas Mitocondriales/metabolismo
8.
Mol Autism ; 15(1): 39, 2024 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300547

RESUMEN

BACKGROUND: Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT. METHODS: Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed. RESULTS: mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice. LIMITATIONS: The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions. CONCLUSIONS: The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.


Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Metabolismo Energético , Mitocondrias , Receptor Cannabinoide CB1 , Síndrome de Rett , Rimonabant , Animales , Femenino , Ratones , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/antagonistas & inhibidores , Síndrome de Rett/metabolismo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Rimonabant/farmacología
9.
Bioorg Med Chem Lett ; 23(22): 6083-6, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24100077

RESUMEN

Here we report the synthesis, pharmacological and pharmacokinetic evaluation of a pilot set of compounds structurally related to the potent and selective 5-HT7 ligand LP-211. Among the studied compounds, N-pyridin-3-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (4b) showed high affinity for 5-HT7 receptors (K(i)=23.8 nM), selectivity over 5-HT1A receptors (>50-fold), in vitro metabolic stability (82%) and weak interaction with P-glycoprotein (BA/AB=3.3). Compound 4b was injected ip in mice to preliminarily evaluate its distribution between blood and brain.


Asunto(s)
Piperazinas/síntesis química , Piperazinas/farmacología , Receptores de Serotonina/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Amidas/sangre , Amidas/síntesis química , Amidas/farmacocinética , Amidas/farmacología , Animales , Barrera Hematoencefálica/metabolismo , Células CACO-2 , Humanos , Ligandos , Masculino , Ratones , Piperazinas/sangre , Piperazinas/farmacocinética , Ensayo de Unión Radioligante , Receptores de Serotonina/química , Relación Estructura-Actividad
10.
Transl Psychiatry ; 13(1): 249, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419878

RESUMEN

Traumatic events may lead to post-traumatic stress disorder (PTSD), with higher prevalence in women. Adverse childhood experiences (ACE) increase PTSD risk in adulthood. Epigenetic mechanisms play important roles in PTSD pathogenesis and a mutation in the methyl-CpG binding protein 2 (MECP2) in mice provide susceptibility to PTSD-like alterations, with sex-dependent biological signatures. The present study examined whether the increased risk of PTSD associated with ACE exposure is accompanied by reduced MECP2 blood levels in humans, with an influence of sex. MECP2 mRNA levels were analyzed in the blood of 132 subjects (58 women). Participants were interviewed to assess PTSD symptomatology, and asked to retrospectively report ACE. Among trauma-exposed women, MECP2 downregulation was associated with the intensification of PTSD symptoms linked to ACE exposure. MECP2 expression emerges as a potential contributor to post-trauma pathophysiology fostering novel studies on the molecular mechanisms underlying its potential sex-dependent role in PTSD onset and progression.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Trastornos por Estrés Postraumático , Animales , Femenino , Humanos , Ratones , Epigénesis Genética , Estudios Retrospectivos , Trastornos por Estrés Postraumático/diagnóstico , Experiencias Adversas de la Infancia , Proteína 2 de Unión a Metil-CpG/genética
11.
Neuropharmacology ; 224: 109350, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36442649

RESUMEN

Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.


Asunto(s)
Diabetes Mellitus , Metformina , Síndrome de Rett , Animales , Femenino , Ratones , Encéfalo/metabolismo , Cognición , Modelos Animales de Enfermedad , Metformina/farmacología , Síndrome de Rett/tratamiento farmacológico
12.
Transl Psychiatry ; 12(1): 506, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36481643

RESUMEN

Numerous mental illnesses arise following stressful events in vulnerable individuals, with females being generally more affected than males. Adverse childhood experiences are known to increase the risk of developing psychopathologies and DNA methylation was demonstrated to drive the long-lasting effects of early life stress and promote stress susceptibility. Methyl-CpG binding protein 2 (MECP2), an X-linked reader of the DNA methylome, is altered in many mental disorders of stress origin, suggesting MECP2 as a marker of stress susceptibility; previous works also suggest a link between MECP2 and early stress experiences. The present work explored whether a reduced expression of MECP2 is paralleled by an increased vulnerability to the negative outcomes of stress exposure during childhood. To this aim, blood MECP2 mRNA levels were analyzed in 63 people without history of mental disorders and traits pertaining to depressive and anxiety symptom clusters were assessed as proxies of the vulnerability to develop stress-related disorders; stress exposure during childhood was also evaluated. Using structural equation modeling, we demonstrate that reduced MECP2 expression is accompanied by symptoms of anxiety/depression in association with exposure to stress in early life, selectively in healthy women. These results suggest a gender-specific involvement of MECP2 in the maladaptive outcomes of childhood adversities, and shed new light on the complex biology underlying gender bias in stress susceptibility.


Asunto(s)
Experiencias Adversas de la Infancia , Sexismo , Humanos , Femenino , Masculino , Estado de Salud
13.
CNS Neurosci Ther ; 28(11): 1718-1732, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35932179

RESUMEN

INTRODUCTION: CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental condition, primarily affecting girls for which no cure currently exists. Neuronal morphogenesis and plasticity impairments as well as metabolic dysfunctions occur in CDD patients. The present study explored the potential therapeutic value for CDD of FRAX486, a brain-penetrant molecule that was reported to selectively inhibit group I p21-activated kinases (PAKs), serine/threonine kinases critically involved in the regulation of neuronal morphology and glucose homeostasis. METHODS: The effects of treatment with FRAX486 on CDD-related alterations were assessed in vitro (100 nM for 48 h) on primary hippocampal cultures from Cdkl5-knockout male mice (Cdkl5-KO) and in vivo (20 mg/Kg, s.c. for 5 days) on Cdkl5-KO heterozygous females (Cdkl5-Het). RESULTS: The in vitro treatment with FRAX486 completely rescued the abnormal neuronal maturation and the number of PSD95-positive puncta in Cdkl5-KO mouse neurons. In vivo, FRAX486 normalized the general health status, the hyperactive profile and the fear learning defects of fully symptomatic Cdkl5-Het mice. Systemically, FRAX486 treatment normalized the levels of reactive oxidizing species in the whole blood and the fasting-induced hypoglycemia displayed by Cdkl5-Het mice. In the hippocampus of Cdkl5-Het mice, treatment with FRAX486 rescued spine maturation and PSD95 expression and restored the abnormal PAKs phosphorylation at sites which are critical for their activation (P-PAK-Ser144/141/139) or for the control cytoskeleton remodeling (P-PAK1-Thr212). CONCLUSIONS: Present results provide evidence that PAKs may represent innovative therapeutic targets for CDD.


Asunto(s)
Espasmos Infantiles , Quinasas p21 Activadas , Animales , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Síndromes Epilépticos , Femenino , Glucosa , Masculino , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Piridonas , Pirimidinas , Serina , Treonina/uso terapéutico
14.
Neuroscience ; 453: 113-123, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010341

RESUMEN

Rett syndrome (RTT) is a rare neurologic disorder, characterized by severe behavioural and physiological symptoms. RTT is caused by mutations in the MECP2 gene in about 95% of cases and to date no cure is available. Recent evidence suggests that non-euphoric phytocannabinoids (pCBs) extracted from Cannabis sativa may represent innovative therapeutic molecules for RTT, with the cannabinoid cannabidivarin having beneficial effects on behavioural and brain molecular alterations in RTT mouse models. The present study evaluated the potential therapeutic efficacy for RTT of cannabidiolic acid (CBDA; 0.2, 2, 20 mg/kg through intraperitoneal injections for 14 days), a pCB that has proved to be effective for the treatment of nausea and anxiety in rodents. This study demonstrates that systemic treatment with the low dose of CBDA has anti-nociceptive effects and reduces the thermal hyperalgesia in 8 month-old MeCP2-308 male mice, a validated RTT mouse model. CBDA did not affect other behavioural or molecular parameters. These results provide support to the antinociceptive effects of CBDA and stress the need for further studies aimed at clarifying the mechanisms underlying the abnormal pain perception in RTT.


Asunto(s)
Cannabinoides , Síndrome de Rett , Animales , Cannabinoides/farmacología , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Masculino , Proteína 2 de Unión a Metil-CpG , Ratones , Dolor , Síndrome de Rett/complicaciones , Síndrome de Rett/tratamiento farmacológico
15.
J Neuropathol Exp Neurol ; 80(3): 265-273, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33598674

RESUMEN

Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene, characterized by severe behavioral and physiological impairments for which no cure is available. The stimulation of serotonin receptor 7 (5-HT7R) with its selective agonist LP-211 (0.25 mg/kg/day for 7 days) was proved to rescue neurobehavioral alterations in a mouse model of RTT. In the present study, we aimed at gaining insight into the mechanisms underpinning the efficacy of 5-HT7R pharmacological stimulation by investigating its epigenetic outcomes in the brain of RTT female mice bearing a truncating MeCP2 mutation. Treatment with LP-211 normalized the reduced histone H3 acetylation and HDAC3/NCoR levels, and increased HDAC1/Sin3a expression in RTT mouse cortex. Repeated 5-HT7R stimulation also appeared to strengthen the association between NCoR and MeCP2 in the same brain region. A different profile was found in RTT hippocampus, where LP-211 rescued H3 hyperacetylation and increased HDAC3 levels. Overall, the present data highlight a new scenario on the relationship between histone acetylation and serotoninergic pathways. 5-HT7R is confirmed as a pivotal therapeutic target for the recovery of neuronal function supporting the translational value of this promising pharmacological approach for RTT.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Histonas/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Receptores de Serotonina/metabolismo , Síndrome de Rett/metabolismo , Acetilación , Animales , Encéfalo/efectos de los fármacos , Femenino , Histonas/genética , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piperazinas/farmacología , Piperazinas/uso terapéutico , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Agonistas de Receptores de Serotonina/farmacología , Agonistas de Receptores de Serotonina/uso terapéutico
16.
J Clin Med ; 9(6)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492904

RESUMEN

Metformin is the first-line therapy for diabetes, even in children, and a promising attractive candidate for drug repurposing. Mitochondria are emerging as crucial targets of metformin action both in the periphery and in the brain. The present study evaluated whether treatment with metformin may rescue brain mitochondrial alterations and contrast the increased oxidative stress in a validated mouse model of Rett syndrome (RTT), a rare neurologic disorder of monogenic origin characterized by severe behavioral and physiological symptoms. No cure for RTT is available. In fully symptomatic RTT mice (12 months old MeCP2-308 heterozygous female mice), systemic treatment with metformin (100 mg/kg ip for 10 days) normalized the reduced mitochondrial ATP production and ATP levels in the whole-brain, reduced brain oxidative damage, and rescued the increased production of reactive oxidizing species in blood. A 10-day long treatment with metformin also boosted pathways related to mitochondrial biogenesis and antioxidant defense in the brain of metformin-treated RTT mice. This treatment regimen did not improve general health status and motor dysfunction in RTT mice at an advanced stage of the disease. Present results provide evidence that systemic treatment with metformin may represent a novel, repurposable therapeutic strategy for RTT.

17.
Neurosci Biobehav Rev ; 107: 115-135, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31108160

RESUMEN

Rett syndrome (RTT) is a rare neurological disorder primarily affecting females, causing severe cognitive, social, motor and physiological impairments for which no cure currently exists. RTT clinical diagnosis is based on the peculiar progression of the disease, since patients show an apparently normal initial development with a subsequent sudden regression at around 2 years of age. Accumulating evidences are rising doubts regarding the absence of early impairments, hence questioning the concept of regression. We reviewed the published literature addressing the pre-symptomatic stage of the disease in both patients and animal models with a particular focus on behavioral, physiological and brain abnormalities. The emerging picture delineates subtle, but reliable impairments that precede the onset of overt symptoms whose bases are likely set up already during embryogenesis. Some of the outlined alterations appear transient, suggesting compensatory mechanisms to occur in the course of development. There is urgent need for more systematic developmental analyses able to detect early pathological markers to be used as diagnostic tools and precocious targets of time-specific interventions.


Asunto(s)
Desarrollo Infantil/fisiología , Síndrome de Rett/diagnóstico , Síndrome de Rett/terapia , Preescolar , Humanos
18.
Behav Processes ; 167: 103899, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31326510

RESUMEN

Specialization of the left and right hemispheres to control behavioural responses may represent one of the mechanisms underlying individual differences in personality structure, as well as the preferential use of one hand. The present study investigated the relationship between personality and hand preference in common marmosets (Callithrix jacchus), a little New World monkey that presents highly consistent and stable individual hand preferences for simple reaching. To address this issue, data on 56 different behaviours from the species' behavioural repertoire were measured in 10 different laboratory tests and during observations under social conditions on 16 adult common marmosets. Stable behavioural variables were aggregated a priori into 13 personality traits. Exploratory Factor Analysis (EFA) on personality traits was carried out to verify the presence of major personality factors, and their relationship with direction and strength of individual hand preferences was assessed by multiple regression, taking into account sex and age of the subjects. The largest number of species-specific behaviours so far investigated in this species was taken into account and robust temporal stability between two testing periods was verified. We confirm that common marmosets are characterized by specific and stable personality profiles. A single personality factor, accounting for about 38% of the total variance, was found by EFA, that describes the interest towards unusual and new experiences and resembles the human Openness domain. The strength of the hand preference was found to be predicted by this personality factor, that we named Inquisitiveness. Present results highlight common marmoset as a useful primate model for the study of the relationship between personality and lateralization.


Asunto(s)
Conducta Animal/fisiología , Callithrix/psicología , Lateralidad Funcional/fisiología , Personalidad/fisiología , Animales , Callithrix/fisiología , Femenino , Individualidad , Masculino
19.
Neuropharmacology ; 160: 107664, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31175878

RESUMEN

Post-traumatic stress disorder (PTSD) is a mental disorder characterized by symptoms of persistent anxiety arising after exposure to traumatic events. Stress susceptibility due to a complex interplay between genetic and environmental factors plays a major role in the disease etiology, although biological underpinnings have not been clarified. We hypothesized that aberrant functionality of the methyl-CpG binding protein 2 (MECP2), a master regulator of experience-dependent epigenetic programming, confers susceptibility to develop PTSD-like symptomatology in the aftermath of traumatic events. Transgenic male mice expressing a truncated form of MeCP2 protein (MeCP2-308) were exposed at adulthood to a trauma in the form of high-intensity footshocks. The presence and duration of PTSD-like symptoms were assessed and compared to those of trauma-exposed wild type littermates and MeCP2-308 mice subjected to a mild stressor. The effects of fluoxetine, a prime pharmacological PTSD treatment, on PTSD-like symptomatology were also explored. Trauma-exposed MeCP2-308 mice showed long-lasting hyperresponsiveness to both correct and incorrect predictors of the trauma and persistent increased avoidance of trauma-related cues. Traumatized MeCP2-308 mice also displayed abnormal post-traumatic plasma levels of the stress hormone corticosterone and altered peripheral gene expression mirroring that of PTSD patients. Fluoxetine improved PTSD-like symptoms in trauma-exposed MeCP2-308 mice. These findings provide evidence that MeCP2 dysfunction results in increased susceptibility to develop PTSD-like symptoms after trauma exposure, and identify trauma-exposed MeCP2-308 mice as a new tool to investigate the underpinnings of PTSD vulnerability.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Trastornos por Estrés Postraumático/etiología , Animales , Reacción de Prevención , Condicionamiento Psicológico , Corticosterona/sangre , Corticosterona/metabolismo , Epigenómica , Fluoxetina/uso terapéutico , Expresión Génica , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/metabolismo
20.
Neuropharmacology ; 144: 104-114, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30326240

RESUMEN

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause CDKL5 Deficiency Disorder (CDD), a rare neurodevelopmental syndrome characterized by severe behavioural and physiological symptoms. No cure is available for CDD. CDKL5 is a kinase that is abundantly expressed in the brain and plays a critical role in neurodevelopmental processes, such as neuronal morphogenesis and plasticity. This study provides the first characterization of the neurobehavioural phenotype of 1 year old Cdkl5-null mice and demonstrates that stimulation of the serotonin receptor 7 (5-HT7R) with the agonist molecule LP-211 (0.25 mg/kg once/day for 7 days) partially rescues the abnormal phenotype and brain molecular alterations in Cdkl5-null male mice. In particular, LP-211 treatment completely normalizes the prepulse inhibition defects observed in Cdkl5-null mice and, at a molecular level, restores the abnormal cortical phosphorylation of rpS6, a downstream target of mTOR and S6 kinase, which plays a direct role in regulating protein synthesis. Moreover, we demonstrate for the first time that mitochondria show prominent functional abnormalities in Cdkl5-null mouse brains that can be restored by pharmacological stimulation of brain 5-HT7R.


Asunto(s)
Encéfalo/efectos de los fármacos , Síndromes Epilépticos/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Piperazinas/farmacología , Inhibición Prepulso/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacología , Espasmos Infantiles/tratamiento farmacológico , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Síndromes Epilépticos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Fosforilación/efectos de los fármacos , Inhibición Prepulso/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Distribución Aleatoria , Receptores de Serotonina/metabolismo , Espasmos Infantiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA