Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Data ; 11(1): 189, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347012

RESUMEN

QUIN database integrates and organizes structural-geological information from published and unpublished sources to constrain deformation in seismotectonic studies. The initial release, QUIN1.0, comprised 3,339 Fault Striation Pairs, mapped on 445 sites exposed along the Quaternary faults of central Italy. The present Data Descriptor introduces the QUIN 2.0 release, which includes 4,297 Fault Striation Pairs on 738 Structural Sites from southern Italy. The newly investigated faults span ~500 km along the Apennines chain, with strikes transitioning from ~SE to ~SW and comprehensively details Fault Striation Pairs' location, attitude, kinematics, and deformation axes. Additionally, it offers a shapefile of the fault traces hosting the data. The QUIN 2.0 release offers a significant geographic extension to the QUIN 1.0, with comprehensive description of local geometric-kinematic complexities of the regional pattern. The QUIN data may be especially relevant for constraining intra-Apennine potential seismogenic deformation patterns, where earthquake data only offer scattered or incomplete information. QUIN's data will support studies aimed at enhancing geological understanding, hazard assessment and comprehension of fault rupture propagation and barriers.

2.
Sci Rep ; 9(1): 4139, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858418

RESUMEN

The main magma source for eruptions on Etna (Italy) is poorly constrained. Here we use data on the size distributions of volcanic fissures/feeder-dykes, crater cones, dyke thicknesses, and lava flows to estimate the average magma volume flowing out of the chamber during eruptions and the volume of the chamber. For the past four centuries the average magma volume leaving the chamber during each eruption is estimated at 0.064 km3. From the theory of poroelasticity the estimated chamber volume is then between 69 and 206 km3. For comparison, a sill-like, circular chamber (an oblate ellipsoid) 1 km thick and 14 km in diameter would have a volume of about 154 km3. The elastic strain energy stored in the host rock during inflation of such a chamber is about 2.8 × 1014 J. Estimating the surface energy of a typical dyke-fracture as about 107 J m-2, the results suggest that the stored strain energy is sufficient to generate a dyke-fracture with an area of about 28 km2. The average strike-dimension of volcanic fissures/feeder-dykes in Etna is about 2.7 km. It follows that the estimated strain energy is sufficient to generate a feeder-dyke with a strike-dimension of 2-3 km and with a dip-dimension as great as 10 km, agreeing with the maximum estimated depth of the magma chamber.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA