Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Fish Biol ; 92(1): 268-273, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29193066

RESUMEN

This work examined three different phenotypes of the yellow-eel stage of the European eel Anguilla anguilla, broad-heads, narrow-heads and eels with an intermediate head shape. The aim was to see whether broad-headed A. anguilla, which generally consume harder, larger prey, such as crustaceans and fish, exerted greater bite force than the narrow-headed variant, which mainly consume soft, small prey such as chironomid larvae. It was found that in 99 yellow A. anguilla, in vivo bite force of broad-heads are higher compared with narrow-heads and intermediates.


Asunto(s)
Anguilla/fisiología , Fuerza de la Mordida , Anguilla/anatomía & histología , Anguilla/genética , Animales , Conducta Alimentaria , Cabeza/anatomía & histología , Cabeza/fisiología , Fenotipo
2.
J Anat ; 224(6): 710-23, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24697519

RESUMEN

Seahorses and pipehorses both possess a prehensile tail, a unique characteristic among teleost fishes, allowing them to grasp and hold onto substrates such as sea grasses. Although studies have focused on tail grasping, the pattern of evolutionary transformations that made this possible is poorly understood. Recent phylogenetic studies show that the prehensile tail evolved independently in different syngnathid lineages, including seahorses, Haliichthys taeniophorus and several types of so-called pipehorses. This study explores the pattern that characterizes this convergent evolution towards a prehensile tail, by comparing the caudal musculoskeletal organization, as well as passive bending capacities in pipefish (representing the ancestral state), pipehorse, seahorse and H. taeniophorus. To study the complex musculoskeletal morphology, histological sectioning, µCT-scanning and phase contrast synchrotron scanning were combined with virtual 3D-reconstructions. Results suggest that the independent evolution towards tail grasping in syngnathids reflects at least two quite different strategies in which the ancestral condition of a heavy plated and rigid system became modified into a highly flexible one. Intermediate skeletal morphologies (between the ancestral condition and seahorses) could be found in the pygmy pipehorses and H. taeniophorus, which are phylogenetically closely affiliated with seahorses. This study suggests that the characteristic parallel myoseptal organization as already described in seahorse (compared with a conical organization in pipefish and pipehorse) may not be a necessity for grasping, but represents an apomorphy for seahorses, as this pattern is not found in other syngnathid species possessing a prehensile tail. One could suggest that the functionality of grasping evolved before the specialized, parallel myoseptal organization seen in seahorses. However, as the grasping system in pipehorses is a totally different one, this cannot be concluded from this study.


Asunto(s)
Evolución Biológica , Filogenia , Smegmamorpha/anatomía & histología , Cola (estructura animal)/anatomía & histología , Animales , Imagenología Tridimensional , Microtomografía por Rayos X
3.
J Fish Biol ; 78(6): 1799-823, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21651529

RESUMEN

A thorough morphological description of the feeding apparatus in Hippocampus reidi, a long-snouted seahorse, and Dunckerocampus dactyliophorus, an extremely long-snouted pipefish, revealed specialized features that might be associated with the fast and powerful suction feeding, like the two ligamentous connections between the lower jaw and the hyoid, the saddle joint of the latter with the suspensorium and the vertebro-pectoral fusion that articulates on three points with the cranium. Despite the conserved morphology of the feeding apparatus, it was found that in H. reidi the orientation of the occipital joint is ventrocaudal, the sternohyoideus and epaxial muscles are more bulky and both have a short tendon. In D. dactyliophorus, on the other hand, the protractor hyoidei muscle is enclosed by the mandibulo-hyoid ligament, the sternohyoideus and epaxial tendons are long and a sesamoid bone is present in the latter. These features were compared to other syngnathid species with different snout lengths to evaluate the implications of snout elongation on the musculoskeletal structure of the cranium. The arched path of the adductor mandibulae and the greater rigidity of the lower jaw might be related to elongation of the snout, as it yields an increased mechanical advantage of the lower jaw system and a reduced torque between the elements of the lower jaw during protractor hyoidei muscle contraction, respectively. Nevertheless, most observed features did not seem to be related to snout length, but might be associated with different force-generating strategies.


Asunto(s)
Conducta Alimentaria/fisiología , Conducta Predatoria/fisiología , Cráneo/anatomía & histología , Smegmamorpha/anatomía & histología , Animales , Fenómenos Biomecánicos , Cráneo/fisiología , Smegmamorpha/fisiología
4.
J Morphol ; 268(4): 343-56, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17351957

RESUMEN

The remarkable lifestyle of heterocongrines has drawn the attention of many authors in the past, though no or little attention has been paid to the morphology of the tail and the head of these species. In order to examine the true nature of possible morphological specializations of the head and tail and their relation to their tail-first burrowing habit and/or feeding mode, a detailed myological and osteological study of Heteroconger hassi and Heteroconger longissimus was performed. The osteological similarities of the cranial skeleton between H. hassi and H. longissimus are striking. Most of the cranial muscles show no variation in presence, insertion or origin between these two species except for the adductor mandibulae complex, the adductor hyomandibulae and the intermandibularis. The adductor mandibulae complex is small, compared to that of other anguilliform species, and is probably related to their suction-dominated feeding mode and a diet, comprising mainly small, soft prey items. Heterocongrinae have undergone several morphological specializations in the tail for their tail-first burrowing lifestyle. The skeleton and musculature of the tail of H. hassi and H. longissimus are similar. In both species the caudal skeleton is highly reduced and fortified, forming a firm, pointed burrowing tool. Intrinsic caudal musculature is reduced and some muscles (interradials, supracarinalis) are even absent.


Asunto(s)
Anguilas/anatomía & histología , Anguilas/fisiología , Conducta Alimentaria/fisiología , Animales , Biodiversidad , Cabeza/anatomía & histología , Cráneo/anatomía & histología , Especificidad de la Especie , Cola (estructura animal)/anatomía & histología
5.
J Morphol ; 266(3): 356-68, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16235254

RESUMEN

The order Anguilliformes forms a natural group of eel-like species. Moringua edwardsi (Moringuidae) is of special interest because of its peculiar fossorial lifestyle: this species burrows head-first. Externally pronounced morphological specializations for a fossorial lifestyle include: reduced eyes, lack of color, low or absent paired vertical fins, elongated, cylindrical body, reduced head pores of the lateral line system, etc. Many fossorial amphibians, reptiles, and even mammals have evolved similar external specializations related to burrowing. The present study focuses on osteological and myological features of M. edwardsi in order to evaluate the structural modifications that may have evolved as adaptations to burrowing. Convergent evolutionary structures and possible relations with head-first burrowing, miniaturization, feeding habits, etc., were investigated. Body elongation, reduction of the eyes, modified cranial lateral line system, and modified skull shape (pointed though firm) can be considered specializations for head-first burrowing. Hyperossification can probably be regarded more as a specialization to both head-first burrowing and feeding, even though an impact of miniaturization cannot be excluded. Hypertrophied adductor mandibulae muscles and the enlarged coronoid process can be associated with both feeding requirements (it enhances bite forces necessary for their predatory behavior) and with a burrowing lifestyle, as well as miniaturization.


Asunto(s)
Adaptación Biológica , Conducta Animal , Anguilas , Cabeza/anatomía & histología , Cráneo/anatomía & histología , Animales , Evolución Biológica , Fuerza de la Mordida , Conducta Predatoria
6.
J Morphol ; 273(4): 441-52, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22109664

RESUMEN

The vertebral column of fishes has traditionally been divided into just two distinct regions, abdominal and caudal. Recently, however, developmental, morphological, and mechanical investigations have brought this traditional regionalization scheme into question. Alternative regionalization schema advocate the division of the abdominal vertebrae into cervical, abdominal, and in some cases, transitional regions. Here, we investigate regional variation at the level of the vertebrae and intervertebral joint (IVJ) tissues in the striped bass, Morone saxatilis. We use gross dissection, histology, and polarized light imaging to quantify vertebral height, width, length, IVJ length, IVJ tissue volume and cross-sectional area, and vertical septum fiber populations, and angles of insertion. Our results reveal regional differences between the first four (most rostral) abdominal vertebrae and IVJs and the next six abdominal vertebrae and IVJs, supporting the recognition of a distinct cervical region. We found significant variation in vertebral length, width, and height from cranial to caudal. In addition, we see a significant decline in the volume of notochordal cells and the cross-sectional area of the fibrous sheath from cranial to caudal. Further, polarized light imaging revealed four distinct fiber populations within the vertical septum in the cervical and abdominal regions in contrast with just one fiber population found in the caudal region. Measurement of the insertion angles of these fiber populations revealed significant differences between the cervical and abdominal regions. Differences in vertebral, IVJ, and vertical septum morphology all predict greater range of motion and decreased stiffness in the caudal region of the fish compared with the cervical and abdominal regions.


Asunto(s)
Lubina/anatomía & histología , Columna Vertebral/anatomía & histología , Animales , Articulaciones/anatomía & histología , Notocorda/anatomía & histología , Rango del Movimiento Articular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA