RESUMEN
BACKGROUND: A growing field of evidence suggests the involvement of oncogenic receptor tyrosine kinases (RTKs) in cell transformation. Deregulated activity of RTKs in tumors can determine disease progression and therapeutic responses in several types of cancer, including neuroblastoma (NB). Therefore, RTKs targeting is a worthwhile challenge for the oncologists. Nevertheless, acquired resistance to RTK inhibitors (RTKi) remains a serious problem. Autophagy activation is among the possible obstacles for good efficacy of the therapy with RTKi. METHODS: Under different treatment conditions we measured autophagic flux using immunoblot and immunofluorescence assays. Death induction was validated by trypan blue exclusion assay and FACS analysis (calcein-AM/propidium iodide). The NB cell lines SH-SY5Y and Kelly were used for the in vitro study. RESULTS: In order to define whether autophagy might be a limiting factor for the efficacy of RTKi in NB cells, we firstly checked its activation following the treatment with several RTKi. Next, we investigated the possibility to increase their therapeutic efficiency by combining RTKi with autophagy blocking agents in vitro. We exploited the effectiveness of three RTKi either alone or in combination with autophagy inhibitors (Chloroquine-CQ and Spautin-1). We demonstrated that autophagy induction was drug-dependent, and that its inhibition increased the anti-tumor activity of a single RTKi unevenly. We observed that the combined use of blocking agents which impair late autophagy events, such as CQ, and RTKi can be more effective with respect to the use of RTKi alone. CONCLUSIONS: In the present report, we assessed the conditions under which autophagy is activated during the use of different RTKi currently in the pre-clinical evaluation for NB. We summarized the achievements of combined RTK/autophagy inhibitors treatment as a promising approach to enhance the efficacy of RTKi in impairing tumor cells viability.
RESUMEN
BACKGROUND: Less than 5% of neuroblastomas (NB) occur in adolescents and young adults (AYA), in whom the disease has an indolent and fatal course. PROCEDURE: We studied the genomic profile and histological characteristics of 34 NBs from AYA patients enrolled in the Italian Neuroblastoma Registry (INBR) between 1979 and 2009. RESULTS: Disease was disseminated in 20 patients and localized in 14; 30/34 tumors were classified as NB and 4/34 as nodular ganglioneuroblastoma (nGNB). Segmental Chromosome Aberrations (SCAs) were observed in 29 tumors (85%) namely 1p imbalance (58%), 17q gain (52%), 9p loss (32%), 11q loss (30%), 1q gain (17%), 7q gain (17%), 2p gain (14%), 3p loss (14%), and 4p loss (7%). MYCN amplification and MYCN gain were detected in 3 (10%) and 2 cases (7%) respectively. An anaplastic lymphoma receptor tyrosine kinase (ALK) gene mutation study on the available cases from this cohort revealed 4/25 (16%) mutated cases. In parallel, alpha thalassaemia/mental retardation syndrome X linked (ATRX) gene mutations were also sought, a novel mutation being detected in 1/21 (4,7%) cases. CONCLUSION: This study confirmed the low incidence of MYCN amplification in AYA and recorded a high frequency of 17q gain and 9p and 11q loss independently from the stage of the disease. The presence of 1q gain, which identifies patients with particularly aggressive disease, relapse and poor survival, was also detected. Furthermore, the frequency of ALK mutations suggests that a target-based therapy with ALK inhibitors might be effective in this subset of patients.
Asunto(s)
Aberraciones Cromosómicas , Neuroblastoma/genética , Adolescente , Adulto , Niño , Análisis Citogenético , Femenino , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Italia , Masculino , Reacción en Cadena de la Polimerasa Multiplex , Neuroblastoma/patología , Adulto JovenRESUMEN
Several neuroblastoma (NB) susceptibility loci have been identified within LINC00340, BARD1, LMO1, DUSP12, HSD17B12, DDX4, IL31RA, HACE1 and LIN28B by genome-wide association (GWA) studies including European American individuals. To validate and comprehensively evaluate the impact of the identified NB variants on disease risk and phenotype, we analyzed 16 single nucleotide polymorphisms (SNPs) in an Italian population (370 cases and 809 controls). We assessed their regulatory activity on gene expression in lymphoblastoid (LCLs) and NB cell lines. We evaluated the cumulative effect of the independent loci on NB risk and high-risk phenotype development in Italian and European American (1627 cases and 2575 controls) populations. All NB susceptibility genes replicated in the Italian dataset except for DDX4 and IL31RA, and the most significant SNP was rs6435862 in BARD1 (P = 8.4 × 10(-15)). BARD1 showed an additional and independent SNP association (rs7585356). This variant influenced BARD1 mRNA expression in LCLs and NB cell lines. No evidence of epistasis among the NB-associated variants was detected, whereas a cumulative effect of risk variants on NB risk (European Americans: P (trend) = 6.9 × 10(-30), Italians: P (trend) = 8.55 × 10(13)) and development of high-risk phenotype (European Americans: P (trend) = 6.9 × 10(-13), Italians: P (trend) = 2.2 × 10(-1)) was observed in a dose-dependent manner. These results provide further evidence that the risk loci identified in GWA studies contribute to NB susceptibility in distinct populations and strengthen the role of BARD1 as major genetic contributor to NB risk. This study shows that even in the absence of interaction the combination of several low-penetrance alleles has potential to distinguish subgroups of patients at different risks of developing NB.
Asunto(s)
Predisposición Genética a la Enfermedad , Neuroblastoma/genética , Polimorfismo de Nucleótido Simple , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Estudios de Casos y Controles , Línea Celular Tumoral , Niño , Preescolar , Femenino , Frecuencia de los Genes , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Lactante , Desequilibrio de Ligamiento , Masculino , Riesgo , TranscriptomaRESUMEN
The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Mutación de Línea Germinal , Meduloblastoma/genética , Proteínas Tirosina Quinasas Receptoras/genética , Adolescente , Anaplasia/enzimología , Anaplasia/genética , Anaplasia/patología , Quinasa de Linfoma Anaplásico , Niño , Preescolar , Codón de Terminación , Análisis Mutacional de ADN , Detección Precoz del Cáncer/métodos , Activación Enzimática , Exones , Mutación del Sistema de Lectura , Humanos , Lactante , Meduloblastoma/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
BACKGROUND: The Anaplastic Lymphoma Kinase (ALK) is an orphan receptor tyrosine kinase, which undergoes post-translational N-linked glycosylation. The catalytic domain of ALK was originally identified in the t(2;5) translocation that produces the unglycosylated oncogenic protein NPM-ALK, which occurs in Anaplastic Large Cell Lymphoma (ALCL). Recently, both germline and somatic activating missense mutations of ALK have been identified in neuroblastoma (NB), a pediatric cancer arising from neural crest cells. Moreover, we previously reported that ALK expression is significantly upregulated in advanced/metastatic NB. We hypothesized that ALK function may depend on N-linked glycosylation and that disruption of this post-translational modification would impair ALK activation, regardless the presence of either gene mutations or overexpression. METHODS: We employed tunicamycin to inhibit N-linked glycosylation. The following ALK-positive NB cell lines were used: SH-SY5Y and KELLY (ALK mutation F1174L), UKF-NB3 (ALK mutation R1275Q) and NB1 (ALK amplification). As a control, we used the NB cell lines LA1-5S and NB5 (no ALK expression), and the ALCL cell line SU-DHL1 (NPM-ALK). RESULTS: Tunicamycin treatment of ALK-positive NB cells resulted in a hypoglycosylated ALK band and in decreased amounts of mature full size receptor. Concomitantly, we observed a marked reduction of mature ALK phosphorylation. On the contrary, tunicamycin had no effects on NPM-ALK phosphorylation in SU-DHL1 cells. Moreover, phosphorylation levels of ALK downstream effectors (AKT, ERK1/2, STAT3) were clearly impaired only in ALK mutated/amplified NB cell lines, whereas no significant reduction was observed in both ALK-negative and NPM-ALK-positive cell lines. Furthermore, inhibition of N-linked glycosylation considerably impaired cell viability only of ALK mutated/amplified NB cells. Finally, the cleavage of the Poly-ADP-ribose-polymerase (PARP) suggested that apoptotic pathways may be involved in cell death. CONCLUSIONS: In this study we showed that inhibition of N-linked glycosylation affects ALK phosphorylation and disrupts downstream pro-survival signaling, indicating that inhibition of this post-translational modification may be a promising therapeutic approach. However, as tunicamycin is not a likely candidate for clinical use other approaches to alter N-linked glycosylation need to be explored. Future studies will assess whether the efficacy in inhibiting ALK activity might be enhanced by the combination of ALK specific small molecule and N-linked glycosylation inhibitors.
Asunto(s)
Neuroblastoma/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Quinasa de Linfoma Anaplásico , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos , Glicosilación/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Tunicamicina/farmacologíaRESUMEN
In breast cancer patients undergoing neoadjuvant chemotherapy before surgery, there is an unmet need for noninvasive predictive biomarkers of response. The analysis of circulating tumor DNA (ctDNA) in particular has been the object of several reports, but few of them have studied the applicability of tagged targeted deep sequencing (tTDS) to clinical practice and its performance compared with droplet digital PCR (ddPCR). Here, we present the first results from an ongoing study involving a prospectively accrued, monocentric cohort of patients affected by invasive breast cancer, undergoing neoadjuvant chemotherapy followed by surgery with curative intent as per clinical practice. A pretreatment tumor biopsy and plasma samples were collected before and during treatment, after surgery, and every six months henceforth or until relapse, whichever came first. Pretreatment biopsies were sequenced with a 409-gene massive parallel sequencing (MPS) panel, allowing the identification of target mutations and their research in plasma by tTDS and ddPCR as a complementary approach. Using tTDS, we demonstrated the presence of at least one deleterious mutation in all the relapsed cases we studied (n = 4), with an average lead time of six months before clinical relapse. The association with ddPCR was suboptimal, and only one relapsed patient could be identified with such method. tTDS shows potential as an early noninvasive method for the detection of MRD in BC patients.
RESUMEN
Oncogenic alteration of the cholesterol synthesis pathway is a recognized mechanism of metabolic adaptation. In the present review, we focus on squalene epoxidase (SE), one of the two rate-limiting enzymes in cholesterol synthesis, retracing its history since its discovery as an antimycotic target to its description as an emerging metabolic oncogene by amplification with clinical relevance in cancer. We review the published literature assessing the association between SE over-expression and poor prognosis in this disease. We assess the works demonstrating how SE promotes tumor cell proliferation and migration, and displaying evidence of cancer cell demise in presence of human SE inhibitors in in vitro and in vivo models. Taken together, robust scientific evidence has by now accumulated pointing out SE as a promising novel therapeutic target in cancer treatment.
Asunto(s)
Neoplasias/metabolismo , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Regulación hacia Arriba , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transducción de Señal/efectos de los fármacos , Escualeno-Monooxigenasa/antagonistas & inhibidores , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Novel druggable targets have been discovered in neuroblastoma (NB), paving the way for more effective treatments. However, children with high-risk NB still show high mortality rates prompting for a search of novel therapeutic options. Here, we aimed at repurposing FDA-approved drugs for NB treatment by performing a high-content screening of a 349 anticancer compounds library. In the primary screening, we employed three NB cell lines, grown as three-dimensional (3D) multicellular spheroids, which were treated with 10 µmol/L of the library compounds for 72 hours. The viability of 3D spheroids was evaluated using a high-content imaging approach, resulting in a primary hit list of 193 compounds. We selected 60 FDA-approved molecules and prioritized drugs with multi-target activity, discarding those already in use for NB treatment or enrolled in NB clinical trials. Hence, 20 drugs were further tested for their efficacy in inhibiting NB cell viability, both in two-dimensional and 3D models. Dose-response curves were then supplemented with the data on side effects, therapeutic index, and molecular targets, suggesting two multiple tyrosine kinase inhibitors, ponatinib and axitinib, as promising candidates for repositioning in NB. Indeed, both drugs showed induction of cell-cycle block and apoptosis, as well as inhibition of colony formation. However, only ponatinib consistently affected migration and inhibited invasion of NB cells. Finally, ponatinib also proved effective inhibition of tumor growth in orthotopic NB mice, providing the rationale for its repurposing in NB therapy. Mol Cancer Ther; 17(7); 1405-15. ©2018 AACR.
Asunto(s)
Antineoplásicos/farmacología , Reposicionamiento de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento , Imidazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridazinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Expresión Génica , Genes Reporteros , Humanos , Ratones , Neuroblastoma/tratamiento farmacológico , Reproducibilidad de los Resultados , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The discovery of missense mutations of ALK gene identified this receptor tyrosine kinase as a therapeutic target in neuroblastoma (NB). Moreover, a high level of ALK protein has been associated with metastatic NB cases and with a worse prognosis, suggesting that also ALK overexpression is involved in NB tumorigenesis. Since miRNAs play key roles in the regulation of gene expression we aimed at identifying those miRNAs that can regulate ALK in NB. We therefore analyzed the genome-wide expression profile of miRNAs in two sample sets of 16 NB cell lines and 22 NB samples by using miRNA microarrays. Both sample sets were then divided into two subgroups showing high (ALK+) or low/absent (ALK-) expression of ALK. Results showed a down-regulation of 30 and 23 miRNAs (p-value <0.05) in the ALK+ group in NB cell lines and samples, respectively. Validation analysis indicated that miR-424-5p and miR-503-5p, belonging to the same cluster, were differentially expressed in both NB cell lines and tumor samples. Although only miR-424-5p showed a direct binding to ALK 3'-UTR, both miRNAs led to a remarkable decreasing of ALK protein as well as to the inhibition of cell viability in ALK+ NB cell lines. In conclusion, our data indicate that both miR-424-5p and miR-503-5p are involved in regulating ALK expression in NB, either by directly targeting ALK receptor or indirectly, and may thus serve as potential therapeutic tools in ALK dependent NBs.
RESUMEN
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.
Asunto(s)
Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neuroblastoma/genética , Transducción de Señal/genética , Adolescente , Niño , Preescolar , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Neuroblastoma/patología , Análisis de SupervivenciaRESUMEN
Although several genes have been associated to neuroblastoma (NB) predisposition and aggressiveness, further genes are likely involved in the overall risk of developing this pediatric cancer. We thus carried out whole-exome sequencing on germline DNA from two affected second cousins and two unlinked healthy relatives from a large family with hereditary NB. Bioinformatics analysis revealed 6999 variations that were exclusively shared by the two familial NB cases. We then considered for further analysis all unknown or rare missense mutations, which involved 30 genes. Validation and analysis of these variants led to identify a GALNT14 mutation (c.802C > T) that properly segregated in the family and was predicted as functionally damaging by PolyPhen2 and SIFT. Screening of 8 additional NB families and 167 sporadic cases revealed this GALNT14 mutation in the tumors of two twins and in the germline of one sporadic NB patient. Moreover, a significant association between MYCN amplification and GALNT14 expression was observed in both NB patients and cell lines. Also, GALNT14 higher expression is associated with a worse OS in a public dataset of 88 NB samples (http://r2.amc.nl). GALNT14 is a member of the polypeptide N-acetylgalactosaminyl-transferase family and maps closely to ALK on 2p23.1, a region we previously discovered in linkage with NB in the family here considered. The aberrant function of GALNTs can result in altered glycoproteins that have been associated to the promotion of tumor aggressiveness in various cancers. Although rare, the recurrence of this mutation suggests GALNT14 as a novel gene potentially involved in NB predisposition.
Asunto(s)
Biomarcadores de Tumor/genética , Mutación de Línea Germinal , Mutación Missense , N-Acetilgalactosaminiltransferasas/genética , Neuroblastoma/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Biología Computacional , Análisis Mutacional de ADN , Amplificación de Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Herencia , Humanos , Estimación de Kaplan-Meier , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/enzimología , Neuroblastoma/mortalidad , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Linaje , Fenotipo , Pronóstico , Factores de Riesgo , Gemelos/genéticaRESUMEN
PURPOSE: Activating ALK mutations are present in almost 10% of primary neuroblastomas and mark patients for treatment with small-molecule ALK inhibitors in clinical trials. However, recent studies have shown that multiple mechanisms drive resistance to these molecular therapies. We anticipated that detailed mapping of the oncogenic ALK-driven signaling in neuroblastoma can aid to identify potential fragile nodes as additional targets for combination therapies. EXPERIMENTAL DESIGN: To achieve this goal, transcriptome profiling was performed in neuroblastoma cell lines with the ALK(F1174L) or ALK(R1275Q) hotspot mutations, ALK amplification, or wild-type ALK following pharmacologic inhibition of ALK using four different compounds. Next, we performed cross-species genomic analyses to identify commonly transcriptionally perturbed genes in MYCN/ALK(F1174L) double transgenic versus MYCN transgenic mouse tumors as compared with the mutant ALK-driven transcriptome in human neuroblastomas. RESULTS: A 77-gene ALK signature was established and successfully validated in primary neuroblastoma samples, in a neuroblastoma cell line with ALK(F1174L) and ALK(R1275Q) regulable overexpression constructs and in other ALKomas. In addition to the previously established PI3K/AKT/mTOR, MAPK/ERK, and MYC/MYCN signaling branches, we identified that mutant ALK drives a strong upregulation of MAPK negative feedback regulators and upregulates RET and RET-driven sympathetic neuronal markers of the cholinergic lineage. CONCLUSIONS: We provide important novel insights into the transcriptional consequences and the complexity of mutant ALK signaling in this aggressive pediatric tumor. The negative feedback loop of MAPK pathway inhibitors may affect novel ALK inhibition therapies, whereas mutant ALK induced RET signaling can offer novel opportunities for testing ALK-RET oriented molecular combination therapies.
Asunto(s)
Fosfatasa Alcalina/genética , Resistencia a Antineoplásicos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida/métodos , Neuroblastoma/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Retroalimentación Fisiológica , Humanos , Ratones , Ratones Transgénicos , Neuroblastoma/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Transcriptoma , Regulación hacia ArribaRESUMEN
BACKGROUND: Common variants in DNA may predispose to onset and progression of neuroblastoma (NB). The genotype GG of single nucleotide polymorphism (SNP) rs1800795 (-174 G>C) in interleukin (IL)-6 promoter has been associated with lower survival of high-risk NB. RESULT: To evaluate the impact of IL-6 SNP rs1800795 on disease risk and phenotype, we analyzed 326 Italian NB patients and 511 controls. Moreover, we performed in silico and quantitative Real Time (qRT)-PCR analyses to evaluate the influence of the SNP on gene expression in 198 lymphoblastoid cell lines (LCLs) and in 31 NB tumors, respectively. Kaplan-Meier analysis was used to verify the association between IL-6 gene expression and patient survival. We found that IL-6 SNP is not involved in susceptibility to NB development. However, our results show that a low frequency of genotype CC is significantly associated with a low overall survival, advanced stage, and high-risk phenotype. The in silico (p = 2.61 × 10(-5)) and qRT-PCR (p = 0.03) analyses showed similar trend indicating that the CC genotype is correlated with increased level of IL-6 expression. In report gene assay, we showed that the -174 C variant had a significantly increased transcriptional activity compared with G allele (p = 0.0006). Moreover, Kaplan-Meier analysis demonstrated that high levels of IL-6 are associated with poor outcome in children with NB in two independent gene expression array datasets. CONCLUSIONS: The biological effect of SNP IL-6-174 G>C in relation to promotion of cancer progression is consistent with the observed decreased survival time. The present study suggests that SNP IL-6-174 G>C may be a useful marker for NB prognosis.
Asunto(s)
Interleucina-6/genética , Neuroblastoma/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas/genética , Adolescente , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Línea Celular , Niño , Preescolar , Femenino , Regulación Neoplásica de la Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Lactante , Estimación de Kaplan-Meier , Masculino , Pronóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Riesgo , Factores de TiempoRESUMEN
Neuroblastoma (NB), the most common solid cancer in early childhood, usually occurs sporadically but also its familial occurance is known in 1-2% of NB patients. Germline mutations in the ALK and PHOX2B genes have been found in a subset of familial NBs. However, because some individuals harbouring mutations in these genes do not develop this tumor, additional genetic alterations appear to be required for NB pathogenesis. Herein, we studied an Italian family with three NB patients, two siblings and a first cousin, carrying an ALK germline-activating mutation R1192P, that was inherited from their unaffected mothers and with no mutations in the PHOX2B gene. A comparison between somatic and germline DNA copy number changes in the two affected siblings by a high resolution array-based Comparative Genomic Hybridization (CGH) analysis revealed a germline gain at NKAIN2 (Na/K transporting ATPase interacting 2) locus in one of the sibling, that was inherited from the parent who does not carry the ALK mutation. Surprisingly, NKAIN2 was expressed at high levels also in the affected sibling that lacks the genomic gain at this locus, clearly suggesting the existance of other regulatory mechanisms. High levels of NKAIN2 were detected in the MYCN-amplified NB cell lines and in the most aggressive NB lesions as well as in the peripheral blood of a large cohort of NB patients. Consistent with a role of NKAIN2 in NB development, NKAIN2 was down-regulated during all-trans retinoic acid differentiation in two NB cell lines. Taken together, these data indicate a potential role of NKAIN2 gene in NB growth and differentiation.