RESUMEN
BACKGROUND: Recurrence is a hallmark of ocular toxoplasmosis (OT), and conditions that influence its occurrence remain a challenge. Natural killer cells (NK) are effectors cells whose primary is cytotoxic function against many parasites, including Toxoplasma gondii. Among the NK cell receptors, immunoglobulin-like receptors (KIR) deserve attention due to their high polymorphism. OBJECTIVES: This study aimed to analyse the influence of KIR gene polymorphism in the course of OT infection and its association with recurrences after an active episode. METHODS: Ninety-six patients from the Ophthalmologic Clinic of the National Institute of Infectology Evandro Chagas were followed for up to five years. After DNA extraction, genotyping of the patients was performed by polymerase chain reaction sequence-specific oligonucleotide (PCR-SSO) utilising Luminex equipment for reading. During follow-up, 60.4% had a recurrence. FINDINGS: We identified 25 KIR genotypes and found a higher frequency of genotype 1 (31.7%) with worldwide distribution. We note that the KIR2DL2 inhibitor gene and the gene activator KIR2DS2 were more frequent in patients without recurrence. Additionally, we observed that individuals who carry these genes progressed recurrence episodes slowly compared to individuals who do not carry these genes. MAIN CONCLUSIONS: The KIR2DL2 and KIR2DS2 are associated as possible protection markers against ocular toxoplasmosis recurrence (OTR).
Asunto(s)
Toxoplasmosis Ocular , Humanos , Brasil , Receptores KIR/genética , Genotipo , Inmunoglobulinas/genética , Frecuencia de los GenesRESUMEN
BACKGROUND: The central repetitive region (CRR) of the Plasmodium vivax circumsporozoite surface protein (CSP) is composed of a repetitive sequence that is characterised by three variants: VK210, VK247 and P. vivax-like. The most important challenge in the treatment of P. vivax infection is the possibility of differential response based on the parasite genotype. OBJECTIVES: To characterise the CSP variants in P. vivax isolates from individuals residing in a malaria-endemic region in Brazil and to profile these variants based on sensitivity to chloroquine and mefloquine. METHODS: The CSP variants were determined by sequencing and the sensitivity of the P. vivax isolates to chloroquine and mefloquine was determined by Deli-test. FINDINGS: Although five different allele sizes were amplified, the sequencing results showed that all of the isolates belonged to the VK210 variant. However, we observed substantial genetic diversity in the CRR, resulting in the identification of 10 different VK210 subtypes. The frequency of isolates that were resistant to chloroquine and mefloquine was 11.8 and 23.8%, respectively. However, we did not observe any difference in the frequency of the resistant isolates belonging to the VK210 subtypes. MAIN CONCLUSION: The VK210 variant is the most frequently observed in the studied region and there is significant genetic variability in the CRR of the P. vivax CSP. Moreover, the antimalarial drug sensitivity profiles of the isolates does not seem to be related to the VK210 subtypes.
Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Malaria Vivax/parasitología , Mefloquina/farmacología , Plasmodium vivax/efectos de los fármacos , Proteínas Protozoarias/genética , Genotipo , Humanos , Pruebas de Sensibilidad Parasitaria , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Reacción en Cadena de la PolimerasaRESUMEN
The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P. falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were observed between the two time points with regard to the frequencies of the fragment variants. Mixed infections were uncommon. Our results demonstrate conservation of GLURP-R0 and limited polymorphic variation of GLURP-R2 in P. falciparum isolates from individuals living in Porto Velho. This is an important finding, as genetic polymorphisms in B and T-cell epitopes could have implications for the immunological properties of the antigen.
Asunto(s)
Ácido Glutámico/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Polimorfismo Genético/genética , Proteínas Protozoarias/genética , Brasil/epidemiología , Genotipo , Humanos , Malaria Falciparum/epidemiología , Reacción en Cadena de la PolimerasaRESUMEN
Toll-like receptors (TLRs) play a key role in the induced immune response in malaria. Although the potential roles of TLRs have been described, it is necessary to elucidate which of these receptors may actually have an impact on the immunopathogenesis of the disease. This article performed a meta-analysis adhered to the PRISMA statement on TLRs studied in malaria by Plasmodium falciparum and Plasmodium vivax and its impact on susceptibility and pathogenesis during malaria. A search of the literature was undertaken in PubMed, LILACS and SciELO published until June 30th, 2020. The risk of bias was calculated using the Joanna Briggs Institute's Critical Review Checklist. Later, based on the inclusion and/or exclusion criteria, 17 out of 296 articles were harvested for this systematic review, the meta-analysis included studies incorporating 6,747 cases and 8,983 controls. The results showed that only TLR1, TLR9 and TLR4 receptors were associated with parasitemia, TLR2 and TLR6 were related with severity and none TLR was correlated with susceptibility. The data described here should be taken with caution, since the current evidence is limited and inconsistent. More studies are needed given that the results may change depending on the region and genetic background of the populations.
RESUMEN
BACKGROUND: The Plasmodium falciparum Erythrocyte Binding Antigen-175 (EBA-175) is an antigen considered to be one of the leading malaria vaccine candidates. EBA-175 mediates sialic acid-dependent binding to glycophorin A on the erythrocytes playing a crucial role during invasion of the P. falciparum in the host cell. Dimorphic allele segments, termed C-fragment and F-fragment, have been found in high endemicity malaria areas and associations between the dimorphism and severe malaria have been described. In this study, the genetic dimorphism of EBA-175 was evaluated in P. falciparum field isolates from Brazilian malaria endemic area. METHODS: The study was carried out in rural villages situated near Porto Velho, Rondonia State in the Brazilian Amazon in three time points between 1993 and 2008. The allelic dimorphism of the EBA-175 was analysed by Nested PCR. RESULTS: The classical allelic dimorphism of the EBA-175 was identified in the studied area. Overall, C-fragment was amplified in a higher frequency than F-fragment. The same was observed in the three time points where C-fragment was observed in a higher frequency than F-fragment. Single infections (one fragment amplified) were more frequent than mixed infection (two fragments amplified). CONCLUSIONS: These findings confirm the dimorphism of EBA175, since only the two types of fragments were amplified, C-fragment and F-fragment. Also, the results show the remarkable predominance of CAMP allele in the studied area. The comparative analysis in three time points indicates that the allelic dimorphism of the EBA-175 is stable over time.
Asunto(s)
Antígenos de Protozoos/genética , Enfermedades Endémicas , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Polimorfismo Genético , Proteínas Protozoarias/genética , Adolescente , Adulto , Alelos , Brasil/epidemiología , Femenino , Genotipo , Humanos , Masculino , Reacción en Cadena de la Polimerasa/métodos , Población Rural , Adulto JovenRESUMEN
The glutamate-rich protein (GLURP) is an exoantigen expressed in all stages of the Plasmodium falciparum life cycle in humans. Anti-GLURP antibodies can inhibit parasite growth in the presence of monocytes via antibody-dependent cellular inhibition (ADCI), and a major parasite-inhibitory region has been found in the N-terminal R0 region of the protein. Herein, we describe the antiplasmodial activity of anti-GLURP antibodies present in the sera from individuals naturally exposed to malaria in a Brazilian malaria-endemic area. The anti-R0 antibodies showed a potent inhibitory effect on the growth of P. falciparum in vitro, both in the presence (ADCI) and absence (GI) of monocytes. The inhibitory effect on parasite growth was comparable to the effect of IgGs purified from pooled sera from hyperimmune African individuals. Interestingly, in the ADCI test, higher levels of tumour necrosis factor alpha (TNF-α) were observed in the supernatant from cultures with higher parasitemias. Our data suggest that the antibody response induced by GLURP-R0 in naturally exposed individuals may have an important role in controlling parasitemia because these antibodies are able to inhibit the in vitro growth of P. falciparum with or without the cooperation from monocytes. Our results also indicate that TNF-α may not be relevant for the inhibitory effect on P. falciparum in vitro growth.
Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Anciano , Enfermedades Endémicas , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Inmunoglobulina G/inmunología , Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Persona de Mediana Edad , Parasitemia , Plasmodium falciparum/inmunología , Proteínas Protozoarias/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/sangre , Adulto JovenRESUMEN
BACKGROUND: It is well established that infection by Plasmodium vivax is a result of host-parasite interactions. In the present study, association with the IL1/IL2 cytokine profiles, anticircumsporozoite protein antibody levels and parasitic loads was evaluated in individuals naturally infected with P. vivax in an endemic area of the Brazilian Amazon. METHODS: Molecular diagnosis of P. vivax and variants was performed using the PCR-RFLP method and IL1B -511C>T, IL2 -330T>G and IL2+114T>G polymorphisms were identified using PCR-RFLP and allele-specific PCR. IL-1ß and IL-2 cytokine levels were detected by flow cytometry and circumsporozoite protein (CSP) antibodies were measured by ELISA. RESULTS: Three variants of P. vivax CSP were identified and VK247 was found to be the most frequent. However, the prevalence and magnitude of IgG antibodies were higher for the VK210 variant. Furthermore, the antibody response to the CSP variants was not associated with the presence of the variant in the infection. Significant differences were observed between the single nucleotide polymorphism (SNP) -511T>C in the IL1B gene and levels of antibodies to the VK247 and P. vivax-like variants, but there were no associations between SNPs in IL1 and IL2 genes and their plasma products. CONCLUSIONS: Individuals with the rs16944 CC genotype in the IL1ß gene have higher antibody levels to the CSP of P. vivax of VK247 and P. vivax-like variants.
Asunto(s)
Malaria Vivax , Plasmodium vivax , Formación de Anticuerpos , Brasil , Humanos , Inmunoglobulina G , Interleucina-1beta , Malaria Vivax/genética , Plasmodium vivax/genética , Polimorfismo Genético , Proteínas Protozoarias/genéticaRESUMEN
BACKGROUND: The Plasmodium falciparum P126 protein is an asexual blood-stage malaria vaccine candidate antigen. Antibodies against P126 are able to inhibit parasite growth in vitro, and a major parasite-inhibitory epitope has been recently mapped to its 47 kDa N-terminal extremity (octamer repeat domain--OR domain). The OR domain basically consists of six octamer units, but variation in the sequence and number of repeat units may appear in different alleles. The aim of the present study was to investigate the polymorphism of P126 N-terminal region OR domain in P. falciparum isolates from two Brazilian malaria endemic areas and its impact on anti-OR naturally acquired antibodies. METHODS: The study was carried out in two villages, Candeias do Jamari (Rondonia state) and Peixoto de Azevedo (Mato Grosso state), both located in the south-western part of the Amazon region. The repetitive region of the gene encoding the P126 antigen was PCR amplified and sequenced with the di-deoxy chain termination procedure. The antibody response was evaluated by ELISA with the Nt47 synthetic peptide corresponding to the P126 OR-II domain. RESULTS: Only two types of OR fragments were identified in the studied areas, one of 175 bp (OR-I) and other of 199 bp (OR-II). A predominance of the OR-II fragment was observed in Candeias do Jamari whereas in Peixoto de Azevedo both fragments OR-I and OR-II were frequent as well as mixed infection (both fragments simultaneously) reported here for the first time. Comparing the DNA sequencing of OR-I and OR-II fragments, there was a high conservation among predicted amino acid sequences of the P126 N-terminal extremity. Data of immune response demonstrated that the OR domain is highly immunogenic in natural conditions of exposure and that the polymorphism of the OR domain does not apparently influence the specific immune response. CONCLUSION: These findings confirm a limited genetic polymorphism of the P126 OR domain in P. falciparum isolates and that this limited genetic polymorphism does not seem to influence the development of a specific humoral immune response to P126 and its immunogenicity in the studied population.
Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Polimorfismo Genético , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Animales , Brasil , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple , Análisis de Secuencia de ADNRESUMEN
INTRODUCTION: A proliferation-inducing ligand (APRIL) and B cell activation factor (BAFF) are known to play a significant role in the pathogenesis of several diseases, including BAFF in malaria. The aim of this study was to investigate whether APRIL and BAFF plasma concentrations could be part of inflammatory responses associated with P. vivax and P. falciparum malaria in patients from the Brazilian Amazon. METHODS: Blood samples were obtained from P. vivax and P. falciparum malaria patients (n = 52) resident in Porto Velho before and 15 days after the beginning of treatment and from uninfected individuals (n = 12). We investigated APRIL and BAFF circulating levels and their association with parasitaemia, WBC counts, and cytokine/chemokine plasma levels. The expression levels of transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) on PBMC from a subset of 5 P. vivax-infected patients were analyzed by flow cytometry. RESULTS: APRIL plasma levels were transiently increased during acute P. vivax and P. falciparum infections whereas BAFF levels were only increased during acute P. falciparum malaria. Although P. vivax and P. falciparum malaria patients have similar cytokine profiles during infection, in P. vivax acute phase malaria, APRIL but not BAFF levels correlated positively with IL-1, IL-2, IL-4, IL-6, and IL-13 levels. We did not find any association between P. vivax parasitaemia and APRIL levels, while an inverse correlation was found between P. falciparum parasitaemia and APRIL levels. The percentage of TACI positive CD4+ and CD8+ T cells were increased in the acute phase P. vivax malaria. CONCLUSION: These findings suggest that the APRIL and BAFF inductions reflect different host strategies for controlling infection with each malaria species.
Asunto(s)
Factor Activador de Células B/sangre , Malaria Falciparum/sangre , Malaria Vivax/sangre , Malaria/sangre , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/sangre , Adulto , Antimaláricos/uso terapéutico , Factor Activador de Células B/inmunología , Brasil , Estudios de Casos y Controles , Quimioterapia Combinada/métodos , Femenino , Voluntarios Sanos , Interacciones Huésped-Parásitos/inmunología , Humanos , Interleucinas/sangre , Interleucinas/inmunología , Recuento de Leucocitos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Masculino , Parasitemia/inmunología , Parasitemia/parasitología , Plasmodium falciparum/inmunología , Plasmodium vivax/inmunología , Proteína Activadora Transmembrana y Interactiva del CAML/inmunología , Proteína Activadora Transmembrana y Interactiva del CAML/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología , Adulto JovenRESUMEN
Purpureocillium lilacinum is a filamentous, hyaline fungus considered an emerging pathogen in humans. The aim of our study was to evaluate the outcome of hyalohyphomycosis in C57BL/6 murine models inoculated with two clinical P. lilacinum isolates (S1 and S2). Each isolate was inoculated in mice randomly distributed in immunocompetent (CPT) and immunosuppressed (SPS) groups. Mice were evaluated at day 7, 21, and 45 after inoculation for histopathological analysis, recovery of fungal cells, and immunological studies. Histological analysis showed scarce conidia-like structures in lung tissue from CPT mice and a lot of fungal cells in SPS mice inoculated with S2 compared to mice inoculated with S1. The maximum recovery of fungal cells was seen in CPT mice inoculated with both isolates at day 7, but with mean significantly higher in those inoculated with S2 isolate. Phenotypical characterization of T cells showed TCD8+ lymphocytes predominance over TCD4+ in immunosuppressed mice infected and control groups. We also observed higher percentages of the central and effector memory/effector phenotype in CPT mice infected with S2 strain, especially in TCD8+ in the initial period of infection. Regulatory T cells showed higher percentages in immunosuppressed, predominantly after the acute phase. Our results showed that the P. lilacinum is a fungus capable to cause damages in competent and immunosuppressed experimental hosts. Furthermore, S2 isolate seems to cause more damage to the experimental host and it was possible to identify different cellular subsets involved in the mice immune response.
RESUMEN
We investigated the relationships between class II human leukocyte antigens (HLA) and the antibody response to Plasmodium falciparum p126 protein and to its amino-terminal portion (Nt47) in 2 malaria-endemic villages in Brazil, Colina and Ribeirinha. All people from the endemic areas had anti-p126 antibodies, and the frequencies of anti-Nt47 antibodies were similar in both communities (66% for Colina and 75% for Ribeirinha). Typing of HLA showed that Colina and Ribeirinha groups had no significant differences in HLA antigen frequencies. However, in both groups, significant associations between positive response to anti-Nt47 and presence of HLA-DR4, as well as between absence of response and presence of HLA-DR15, were observed. The predominance of positive responses to Nt47 among HLA-DR4 people was independent of the presence of any particular allele. There was no evidence for association between HLA-DQB1 alleles and antibody response to Nt47. Thus, naturally exposed people with different HLA class II antigens seem to respond differently to Nt47, indicating that the choice of relevant peptide sequences may have important consequences for subunit vaccine development.
Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Antígenos HLA-D/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adulto , Alelos , Animales , Formación de Anticuerpos , Brasil , Femenino , Genes MHC Clase II , Geografía , Antígenos HLA-DR/análisis , Subtipos Serológicos HLA-DR , Antígeno HLA-DR4/análisis , Prueba de Histocompatibilidad , Humanos , Malaria Falciparum/inmunología , MasculinoRESUMEN
BACKGROUND The central repetitive region (CRR) of the Plasmodium vivax circumsporozoite surface protein (CSP) is composed of a repetitive sequence that is characterised by three variants: VK210, VK247 and P. vivax-like. The most important challenge in the treatment of P. vivax infection is the possibility of differential response based on the parasite genotype. OBJECTIVES To characterise the CSP variants in P. vivax isolates from individuals residing in a malaria-endemic region in Brazil and to profile these variants based on sensitivity to chloroquine and mefloquine. METHODS The CSP variants were determined by sequencing and the sensitivity of the P. vivax isolates to chloroquine and mefloquine was determined by Deli-test. FINDINGS Although five different allele sizes were amplified, the sequencing results showed that all of the isolates belonged to the VK210 variant. However, we observed substantial genetic diversity in the CRR, resulting in the identification of 10 different VK210 subtypes. The frequency of isolates that were resistant to chloroquine and mefloquine was 11.8 and 23.8%, respectively. However, we did not observe any difference in the frequency of the resistant isolates belonging to the VK210 subtypes. MAIN CONCLUSION The VK210 variant is the most frequently observed in the studied region and there is significant genetic variability in the CRR of the P. vivax CSP. Moreover, the antimalarial drug sensitivity profiles of the isolates does not seem to be related to the VK210 subtypes.
Asunto(s)
Plasmodium vivax/efectos de los fármacos , Mefloquina/uso terapéutico , Cloroquina/uso terapéutico , Resistencia a Múltiples Medicamentos/inmunología , BrasilRESUMEN
BACKGROUND: The antibody response generated during malaria infections is of particular interest, since the production of specific IgG antibodies is required for acquisition of clinical immunity. However, variations in antibody responses could result from genetic polymorphism of the HLA class II genes. Given the increasing focus on the development of subunit vaccines, studies of the influence of class II alleles on the immune response in ethnically diverse populations is important, prior to the implementation of vaccine trials. METHODS AND FINDINGS: In this study, we evaluated the influence of HLA-DRB1* and -DQB1* allelic groups on the naturally acquired humoral response from Brazilian Amazon individuals (nâ=â276) against P. vivax Merozoite Surface Protein-1 (MSP-1), MSP-3α and MSP-9 recombinant proteins. Our results provide information concerning these three P. vivax antigens, relevant for their role as immunogenic surface proteins and vaccine candidates. Firstly, the studied population was heterogeneous presenting 13 HLA-DRB1* and 5 DQB1* allelic groups with a higher frequency of HLA-DRB1*04 and HLA-DQB1*03. The proteins studied were broadly immunogenic in a naturally exposed population with high frequency of IgG antibodies against PvMSP1-19 (86.7%), PvMSP-3 (77%) and PvMSP-9 (76%). Moreover, HLA-DRB1*04 and HLA-DQB1*03 alleles were associated with a higher frequency of IgG immune responses against five out of nine antigens tested, while HLA-DRB1*01 was associated with a high frequency of non-responders to repetitive regions of PvMSP-9, and the DRB1*16 allelic group with the low frequency of responders to PvMSP3 full length recombinant protein. CONCLUSIONS: HLA-DRB1*04 alleles were associated with high frequency of antibody responses to five out of nine recombinant proteins tested in Rondonia State, Brazil. These features could increase the success rate of future clinical trials based on these vaccine candidates.