Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37047215

RESUMEN

Proteostasis, i.e., the homeostasis of proteins, responsible for ensuring protein turnover, is regulated by proteases, which also participate in the etiopathogenesis of multiple conditions. The magic of proteases is such that, in blood coagulation, one same molecule, such as coagulation factor V, for example, can perform both a procoagulant and an anticoagulant function as a result of the activity of proteases. However, this magic has an insidious side to it, as it may also prevent the completion of the clinical value chain of factor V deficiency. This value chain encompasses the discovery of knowledge, the transfer of this knowledge, and its translation to clinical practice. In the case of rare and ultra-rare diseases like factor V deficiency, this value chain has not been completed as the knowledge acquisition phase has dragged out over time, holding up the transfer of knowledge to clinical practice. The reason for this is related to the small number of patients afflicted with these conditions. As a result, new indications must be found to make the therapies cost-effective. In the case of factor V, significant research efforts have been directed at developing a recombinant factor V capable of resisting the action of the proteases capable of inactivating this factor. This is where bioethics and health equity considerations come into the equation.


Asunto(s)
Deficiencia del Factor V , Factor V , Humanos , Factor V/genética , Factor V/metabolismo , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Péptido Hidrolasas/farmacología , Coagulación Sanguínea , Endopeptidasas/farmacología
2.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35955419

RESUMEN

The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation. Homeostatic therapies consist in replacement and nonreplacement treatments or in the administration of antifibrinolytic agents. Rebalancing products reestablish hemostasis by inhibiting natural anticoagulant pathways. These agents include monoclonal antibodies, such as concizumab and marstacimab, which target the tissue factor pathway inhibitor; interfering RNA therapies, such as fitusiran, which targets antithrombin III; and protease inhibitors, such as serpinPC, which targets active protein C. In cases of thrombophilia (deficiency of protein C, protein S, or factor V Leiden), treatment may consist in direct oral anticoagulants, replacement therapy (plasma or recombinant ADAMTS13) in cases of a congenital deficiency of ADAMTS13, or immunomodulators (prednisone) if the thrombophilia is autoimmune. Monoclonal-antibody-based anti-vWF immunotherapy (caplacizumab) is used in the context of severe thrombophilia, regardless of the cause of the disorder. In cases of disseminated intravascular coagulation, the treatment of choice consists in administration of antifibrinolytics, all-trans-retinoic acid, and recombinant soluble human thrombomodulin.


Asunto(s)
Factor V/metabolismo , Trombofilia , Factor de von Willebrand , Anticoagulantes , Endotelio Vascular/metabolismo , Factor VIII/genética , Factor VIII/uso terapéutico , Homeostasis , Humanos , Proteína C/uso terapéutico , Trombofilia/genética , Factor de von Willebrand/metabolismo
3.
Int J Mol Sci ; 23(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35628611

RESUMEN

Factor V deficiency, an ultra-rare congenital coagulopathy, is characterized by bleeding episodes that may be more or less intense as a function of the levels of coagulation factor activity present in plasma. Fresh-frozen plasma, often used to treat patients with factor V deficiency, is a scarcely effective palliative therapy with no specificity to the disease. CRISPR/Cas9-mediated gene editing, following precise deletion by non-homologous end-joining, has proven to be highly effective for modeling on a HepG2 cell line a mutation similar to the one detected in the factor V-deficient patient analyzed in this study, thus simulating the pathological phenotype. Additional CRISPR/Cas9-driven non-homologous end-joining precision deletion steps allowed correction of 41% of the factor V gene mutated cells, giving rise to a newly developed functional protein. Taking into account the plasma concentrations corresponding to the different levels of severity of factor V deficiency, it may be argued that the correction achieved in this study could, in ideal conditions, be sufficient to turn a severe phenotype into a mild or asymptomatic one.


Asunto(s)
Deficiencia del Factor V , Factor V , Sistemas CRISPR-Cas/genética , Factor V/genética , Deficiencia del Factor V/genética , Edición Génica , Humanos , Mutación
4.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575869

RESUMEN

Factor V is an essential clotting factor that plays a key role in the blood coagulation cascade on account of its procoagulant and anticoagulant activity. Eighty percent of circulating factor V is produced in the liver and the remaining 20% originates in the α-granules of platelets. In humans, the factor V gene is about 80 kb in size; it is located on chromosome 1q24.2, and its cDNA is 6914 bp in length. Furthermore, nearly 190 mutations have been reported in the gene. Factor V deficiency is an autosomal recessive coagulation disorder associated with mutations in the factor V gene. This hereditary coagulation disorder is clinically characterized by a heterogeneous spectrum of hemorrhagic manifestations ranging from mucosal or soft-tissue bleeds to potentially fatal hemorrhages. Current treatment of this condition consists in the administration of fresh frozen plasma and platelet concentrates. This article describes the cases of two patients with severe factor V deficiency, and of their parents. A high level of mutational heterogeneity of factor V gene was identified, nonsense mutations, frameshift mutations, missense changes, synonymous sequence variants and intronic changes. These findings prompted the identification of a new mutation in the human factor V gene, designated as Jaén-1, which is capable of altering the procoagulant function of factor V. In addition, an update is provided on the prospects for the treatment of factor V deficiency on the basis of yet-to-be-developed recombinant products or advanced gene and cell therapies that could potentially correct this hereditary disorder.


Asunto(s)
Análisis Mutacional de ADN , Deficiencia del Factor V/genética , Deficiencia del Factor V/terapia , Factor V/genética , Adolescente , Coagulación Sanguínea , Trastornos de la Coagulación Sanguínea Heredados/genética , Pruebas de Coagulación Sanguínea , Plaquetas/metabolismo , Preescolar , Codón sin Sentido , ADN Complementario/metabolismo , Salud de la Familia , Femenino , Mutación del Sistema de Lectura , Humanos , Masculino , Pakistán , Proteínas Recombinantes/química , Análisis de Secuencia de ADN , España
5.
Thromb Res ; 231: 99-111, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37839151

RESUMEN

Congenital coagulopathies have, throughout the history of medicine, been a focus of scientific study and of great interest as they constitute an alteration of one of the most important and conserved pathways of evolution. The first therapeutic strategies developed to address them were aimed at restoring the blood components lost during hemorrhage by administering whole blood or plasma. Later on, the use of cryoprecipitates was a significant breakthrough as it made it possible to decrease the volumes of blood infused. In the 1970' and 80', clotting factor concentrates became the treatment and, from the 1990's to the present day, recombinant factors -with increasingly longer half-lives- have taken over as the treatment of choice for certain coagulopathies in a seamless yet momentous transition from biological to biotechnological drugs. The beginning of this century, however, saw the emergence of new advanced (gene and cell) treatments, which are currently transforming the therapeutic landscape. The possibility to use cells and viruses as well as specific or bispecific antibodies as medicines is likely to spark a revolution in the world of pharmacology where therapies will be individualized and have long-term effects. Specifically, attention is nowadays focused on the development of gene editing strategies, chiefly those based on CRISPR/Cas technology. Rare coagulopathies such as hemophilia A and B, or even ultra-rare ones such as factor V deficiency, could be among those deriving the greatest benefit from these new developments.


Asunto(s)
Productos Biológicos , Hemofilia A , Hemofilia B , Humanos , Hemofilia B/genética , Edición Génica , Sistemas CRISPR-Cas , Hemofilia A/tratamiento farmacológico , Hemofilia A/genética , Productos Biológicos/uso terapéutico
6.
Animals (Basel) ; 13(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37370549

RESUMEN

Since the time of Hippocrates in the 4th century BC, animal research has been extensively used for various purposes up to the present day. However, the use of animals for research has also been controversial for a long time. We report the findings of a public, online questionnaire-based survey designed to assess the opinions of a sample of Spanish society regarding animal research. Demographic data and opinions were obtained from 806 respondents. The results indicated a high level of acceptance of animal research (73.1%). However, certain factors, such as completing the questionnaire immediately after a reading negative media report (OR = 2.41; 95%CI: 1.64-3.54; p < 0.001), being a woman (OR = 1.77; 95%CI: 1.24-2.53; p = 0.002) or having a non-scientific background (OR = 2.47; 95%CI: 1.76-3.47; p < 0.001), were associated with a tendency towards a more negative opinion. The opinions seemed to be influenced by gender, education level and by protest incidents reported in the media. Our results also indicate that a lot of information regarding animal welfare, such as care and handling protocols, along with legislation was unknown to individuals. Further, a growing popularity of companion species and opposition to animal experimentation for non-biomedical purposes were reflected in the responses obtained. The use of animals for research purposes emerged as a sensitive social issue in terms of concerns about animal ethics and welfare.

7.
Front Vet Sci ; 9: 846216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419447

RESUMEN

Factor V together with activated factor X forms the prothrombinase complex, which transforms prothrombin into thrombin. The Mus musculus species is characterized by very high levels of this factor and short clotting times, which hinders accurate measurements. For that reason, a detailed characterization of such parameters is indispensable. A method was designed as part of this study to provide an accurate determination and standardization of factor V levels, prothrombin time and activated partial thromboplastin time in Mus musculus. Those parameters were evaluated in a sample of 66 healthy animals using a semi-automated coagulometer and human diagnostic reagents in an attempt to determine the most appropriate time of day for the extractions. A mouse-based protocol was designed, capable of making corrections to the samples at dilutions of 1:100 for factor V and at of 1:3 for prothrombin time. The goal was to smoothen the calibration curves, which often present with steep slopes and narrow measurement ranges between one calibration point and another. It was found that the most stable period for blood sample extraction was that comprised between the first 6 h of light. No clinical differences were observed between the sexes and reference intervals were established for factor V (95.80% ± 18.14; 25.21 s ± 1.34), prothrombin time (104.31% ± 14.52; 16.85 s ± 1.32) and activated partial thromboplastin time (32.86 s ± 3.01). The results obtained are applicable to human or veterinary biomedical research, to transfusional medicine or to pathological models for diseases such as factor V deficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA