Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 140(10): 2061-74, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633507

RESUMEN

Tissue cell polarity plays a major role in plant and animal development. We propose that a fundamental building block for tissue cell polarity is the process of intracellular partitioning, which can establish individual cell polarity in the absence of asymmetric cues. Coordination of polarities may then arise through cell-cell coupling, which can operate directly, through membrane-spanning complexes, or indirectly, through diffusible molecules. Polarity is anchored to tissues through organisers located at boundaries. We show how this intracellular partitioning-based framework can be applied to both plant and animal systems, allowing different processes to be placed in a common evolutionary and mechanistic context.


Asunto(s)
Polaridad Celular , Regulación del Desarrollo de la Expresión Génica , Fenómenos Fisiológicos de las Plantas , Animales , Transporte Biológico , Comunicación Celular , Citosol/metabolismo , Drosophila/embriología , Ácidos Indolacéticos/metabolismo , Morfogénesis , Plantas , Transducción de Señal
2.
Development ; 139(17): 3221-31, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22833127

RESUMEN

The regulation of organ size constitutes a major unsolved question in developmental biology. The wing imaginal disc of Drosophila serves as a widely used model system to study this question. Several mechanisms have been proposed to have an impact on final size, but they are either contradicted by experimental data or they cannot explain a number of key experimental observations and may thus be missing crucial elements. We have modeled a regulatory network that integrates the experimentally confirmed molecular interactions underlying other available models. Furthermore, the network includes hypothetical interactions between mechanical forces and specific growth regulators, leading to a size regulation mechanism that conceptually combines elements of existing models, and can be understood in terms of a compression gradient model. According to this model, compression increases in the center of the disc during growth. Growth stops once compression levels in the disc center reach a certain threshold and the compression gradient drops below a certain level in the rest of the disc. Our model can account for growth termination as well as for the paradoxical observation that growth occurs uniformly in the presence of a growth factor gradient and non-uniformly in the presence of a uniform growth factor distribution. Furthermore, it can account for other experimental observations that argue either in favor or against other models. The model also makes specific predictions about the distribution of cell shape and size in the developing disc, which we were able to confirm experimentally.


Asunto(s)
Drosophila/crecimiento & desarrollo , Discos Imaginales/crecimiento & desarrollo , Modelos Biológicos , Transducción de Señal/fisiología , Alas de Animales/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos , Forma de la Célula/fisiología , Simulación por Computador , Discos Imaginales/citología , Tamaño de los Órganos/fisiología , Presión
3.
Methods Mol Biol ; 1544: 103-125, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28050833

RESUMEN

Quantification of vascular morphodynamics during secondary growth has been hampered by the scale of the process. Even in the tiny model plant Arabidopsis thaliana, the xylem can include more than 2000 cells in a single cross section, rendering manual counting impractical. Moreover, due to its deep location, xylem is an inaccessible tissue, limiting live imaging. A novel method to visualize and measure secondary growth progression has been proposed: "the Quantitative Histology" approach. This method is based on a detailed anatomical atlas, and image segmentation coupled with machine learning to automatically extract cell shapes and identify cell type. Here we present a new version of this approach, with a user-friendly interface implemented in the open source software LithoGraphX.


Asunto(s)
Desarrollo de la Planta , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/crecimiento & desarrollo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Interpretación de Imagen Asistida por Computador , Procesamiento de Imagen Asistido por Computador , Microscopía/métodos , Programas Informáticos
4.
Methods Mol Biol ; 1080: 121-34, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24132424

RESUMEN

Confocal microscopy is a technique widely used to live-image plant tissue. Cells can be visualized by using fluorescent probes that mark the cell wall or plasma membrane. This enables the confocal microscope to be used as a 3D scanner with submicron precision. Here we present a protocol using the 3D image processing software MorphoGraphX (http://www.MorphoGraphX.org) to extract the surface geometry and cell shapes in the shoot apex. By segmenting cells over consecutive time points, precise growth maps of the shoot apex can be produced. It is also possible to tag a protein of interest with a fluorescent marker and quantify protein expression at the cellular level.


Asunto(s)
Expresión Génica , Genes de Plantas , Imagenología Tridimensional/métodos , Meristema/citología , Meristema/genética , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Meristema/crecimiento & desarrollo
5.
Science ; 335(6072): 1092-6, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22383846

RESUMEN

A major challenge in biology is to understand how buds comprising a few cells can give rise to complex plant and animal appendages like leaves or limbs. We address this problem through a combination of time-lapse imaging, clonal analysis, and computational modeling. We arrive at a model that shows how leaf shape can arise through feedback between early patterns of oriented growth and tissue deformation. Experimental tests through partial leaf ablation support this model and allow reevaluation of previous experimental studies. Our model allows a range of observed leaf shapes to be generated and predicts observed clone patterns in different species. Thus, our experimentally validated model may underlie the development and evolution of diverse organ shapes.


Asunto(s)
Modelos Biológicos , Morfogénesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Antirrhinum/anatomía & histología , Antirrhinum/genética , Antirrhinum/crecimiento & desarrollo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polaridad Celular , Simulación por Computador , Genes de Plantas , Hojas de la Planta/citología , Imagen de Lapso de Tiempo
6.
Proc Natl Acad Sci U S A ; 103(5): 1627-32, 2006 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-16432202

RESUMEN

The active transport of the plant hormone auxin plays a major role in the initiation of organs at the shoot apex. Polar localized membrane proteins of the PIN1 family facilitate this transport, and recent observations suggest that auxin maxima created by these proteins are at the basis of organ initiation. This hypothesis is based on the visual, qualitative characterization of the complex distribution patterns of the PIN1 protein in Arabidopsis. To take these analyses further, we investigated the properties of the patterns using computational modeling. The simulations reveal previously undescribed properties of PIN1 distribution. In particular, they suggest an important role for the meristem summit in the distribution of auxin. We confirm these predictions by further experimentation and propose a detailed model for the dynamics of auxin fluxes at the shoot apex.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Comunicación Celular , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Cromatografía de Gases , Simulación por Computador , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/metabolismo , Espectrometría de Masas , Proteínas de Transporte de Membrana/metabolismo , Meristema/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Reguladores del Crecimiento de las Plantas , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas , Transducción de Señal
7.
Plant J ; 44(6): 1045-53, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16359396

RESUMEN

In vivo microscopy generates images that contain complex information on the dynamic behaviour of three-dimensional (3D) objects. As a result, adapted mathematical and computational tools are required to help in their interpretation. Ideally, a complete software chain to study the dynamics of a complex 3D object should include: (i) the acquisition, (ii) the preprocessing and (iii) segmentation of the images, followed by (iv) a reconstruction in time and space and (v) the final quantitative analysis. Here, we have developed such a protocol to study cell dynamics at the shoot apical meristem in Arabidopsis. The protocol uses serial optical sections made with the confocal microscope. It includes specially designed algorithms to automate the identification of cell lineage and to analyse the quantitative behaviour of the meristem surface.


Asunto(s)
Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Anatomía Transversal , Linaje de la Célula , Forma de la Célula , Tamaño de la Célula , Meristema/citología , Meristema/crecimiento & desarrollo , Proyectos de Investigación , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA