Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Front Robot AI ; 5: 6, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33500893

RESUMEN

A socially intelligent robot must be capable to extract meaningful information in real time from the social environment and react accordingly with coherent human-like behavior. Moreover, it should be able to internalize this information, to reason on it at a higher level, build its own opinions independently, and then automatically bias the decision-making according to its unique experience. In the last decades, neuroscience research highlighted the link between the evolution of such complex behavior and the evolution of a certain level of consciousness, which cannot leave out of a body that feels emotions as discriminants and prompters. In order to develop cognitive systems for social robotics with greater human-likeliness, we used an "understanding by building" approach to model and implement a well-known theory of mind in the form of an artificial intelligence, and we tested it on a sophisticated robotic platform. The name of the presented system is SEAI (Social Emotional Artificial Intelligence), a cognitive system specifically conceived for social and emotional robots. It is designed as a bio-inspired, highly modular, hybrid system with emotion modeling and high-level reasoning capabilities. It follows the deliberative/reactive paradigm where a knowledge-based expert system is aimed at dealing with the high-level symbolic reasoning, while a more conventional reactive paradigm is deputed to the low-level processing and control. The SEAI system is also enriched by a model that simulates the Damasio's theory of consciousness and the theory of Somatic Markers. After a review of similar bio-inspired cognitive systems, we present the scientific foundations and their computational formalization at the basis of the SEAI framework. Then, a deeper technical description of the architecture is disclosed underlining the numerous parallelisms with the human cognitive system. Finally, the influence of artificial emotions and feelings, and their link with the robot's beliefs and decisions have been tested in a physical humanoid involved in Human-Robot Interaction (HRI).

2.
Artículo en Inglés | MEDLINE | ID: mdl-26075199

RESUMEN

Non-verbal signals expressed through body language play a crucial role in multi-modal human communication during social relations. Indeed, in all cultures, facial expressions are the most universal and direct signs to express innate emotional cues. A human face conveys important information in social interactions and helps us to better understand our social partners and establish empathic links. Latest researches show that humanoid and social robots are becoming increasingly similar to humans, both esthetically and expressively. However, their visual expressiveness is a crucial issue that must be improved to make these robots more realistic and intuitively perceivable by humans as not different from them. This study concerns the capability of a humanoid robot to exhibit emotions through facial expressions. More specifically, emotional signs performed by a humanoid robot have been compared with corresponding human facial expressions in terms of recognition rate and response time. The set of stimuli included standardized human expressions taken from an Ekman-based database and the same facial expressions performed by the robot. Furthermore, participants' psychophysiological responses have been explored to investigate whether there could be differences induced by interpreting robot or human emotional stimuli. Preliminary results show a trend to better recognize expressions performed by the robot than 2D photos or 3D models. Moreover, no significant differences in the subjects' psychophysiological state have been found during the discrimination of facial expressions performed by the robot in comparison with the same task performed with 2D photos and 3D models.

3.
Artículo en Inglés | MEDLINE | ID: mdl-25152892

RESUMEN

"There's a time to be born, and a time to die; a time to break down, and a time to build up; a time to weep, and a time to laugh; a time to keep silence, and a time to speak…" (Ecclesiastes 3, 2-7). There was a time when automata were designed like clocks. Androids will have the time of their creators, the state of the art in technology, a wealth of experience to draw from, as well as the capacity to carry out actions as being endowed with meaning. The machine will undergo a long period of nurturing, from which it will learn to shape some sort of identity.

4.
Artículo en Inglés | MEDLINE | ID: mdl-25225636

RESUMEN

We describe here a wearable, wireless, compact, and lightweight tactile display, able to mechanically stimulate the fingertip of users, so as to simulate contact with soft bodies in virtual environments. The device was based on dielectric elastomer actuators, as high-performance electromechanically active polymers. The actuator was arranged at the user's fingertip, integrated within a plastic case, which also hosted a compact high-voltage circuitry. A custom-made wireless control unit was arranged on the forearm and connected to the display via low-voltage leads. We present the structure of the device and a characterization of it, in terms of electromechanical response and stress relaxation. Furthermore, we present results of a psychophysical test aimed at assessing the ability of the system to generate different levels of force that can be perceived by users.

5.
IEEE Trans Inf Technol Biomed ; 14(2): 364-70, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20064761

RESUMEN

Textile-based sensors offer an unobtrusive method of continually monitoring physiological parameters during daily activities. Chemical analysis of body fluids, noninvasively, is a novel and exciting area of personalized wearable healthcare systems. BIOTEX was an EU-funded project that aimed to develop textile sensors to measure physiological parameters and the chemical composition of body fluids, with a particular interest in sweat. A wearable sensing system has been developed that integrates a textile-based fluid handling system for sample collection and transport with a number of sensors including sodium, conductivity, and pH sensors. Sensors for sweat rate, ECG, respiration, and blood oxygenation were also developed. For the first time, it has been possible to monitor a number of physiological parameters together with sweat composition in real time. This has been carried out via a network of wearable sensors distributed around the body of a subject user. This has huge implications for the field of sports and human performance and opens a whole new field of research in the clinical setting.


Asunto(s)
Electrónica Médica/instrumentación , Monitoreo Fisiológico/instrumentación , Medicina de Precisión , Textiles , Abdomen , Inteligencia Artificial , Vestuario , Electrocardiografía , Humanos , Concentración de Iones de Hidrógeno , Monitoreo Fisiológico/métodos , Oximetría , Respiración , Esternón , Sudor/química , Telemetría , Tórax
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA