Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Stem Cells Dev ; 27(5): 347-354, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29336219

RESUMEN

Various somatic stem cells divide asymmetrically; however, it is not known whether embryonic stem cells (ESCs) divide symmetrically or asymmetrically, not only while maintaining an undifferentiated state but also at the onset of differentiation. In this study, we observed single ESCs using time-lapse imaging and compared sister cell pairs derived from the same mother cell in either the maintenance or differentiation medium. Mouse ESCs were cultured on E-cadherin-coated glass-based dishes, which allowed us to trace single cells. The undifferentiated cell state was detected by green fluorescent protein (GFP) expression driven by the Nanog promoter, which is active only in undifferentiated cells. Cell population analysis using flow cytometry showed that the peak width indicating distribution of GFP expression broadened when cells were transferred to the differentiation medium compared to when they were in the maintenance medium. This finding suggested that the population of ESCs became more heterogeneous at the onset of differentiation. Using single-cell analysis by time-lapse imaging, we found that although the total survival ratio decreased by changing to differentiation medium, the one-live-one-dead ratio of sister cell pairs was smaller compared with randomly chosen non-sister cell pairs, defined as an unsynchronized cell pair control, in both media. This result suggested that sister cell pairs were more positively synchronized with each other compared to non-sister cell pairs. The differences in interdivision time (the time interval between mother cell division and the subsequent cell division) between sister cells was smaller than that between non-sister cell pairs in both media, suggesting that sister cells divided synchronously. Although the difference in Nanog-GFP intensity between sister cells was smaller than that between non-sister cells in the maintenance medium, it was the same in differentiation medium, suggesting asymmetrical Nanog-GFP intensity. These data suggested that ESCs may divide asymmetrically at the onset of differentiation resulting in heterogeneity.


Asunto(s)
Diferenciación Celular , División Celular , Células Madre Pluripotentes/citología , Animales , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Proteína Homeótica Nanog/genética , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA