Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 85: 161-92, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27145841

RESUMEN

In the last 5 years, most of the molecules that control mitochondrial Ca(2+) homeostasis have been finally identified. Mitochondrial Ca(2+) uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca(2+) accumulation inside mitochondrial matrix upon increases in cytosolic Ca(2+). Conversely, Ca(2+) release is under the control of the Na(+)/Ca(2+) exchanger, encoded by the NCLX gene, and of a H(+)/Ca(2+) antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca(2+) across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca(2+) homeostasis and the methods used to investigate the dynamics of Ca(2+) concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca(2+) handling and their pathophysiological role.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Canales de Calcio/química , Canales de Calcio/genética , Señalización del Calcio , Regulación de la Expresión Génica , Homeostasis , Humanos , Transporte Iónico , Cinética , Mitocondrias/genética , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales , Modelos Moleculares , Intercambiador de Sodio-Calcio/genética , Termodinámica
2.
Nature ; 572(7771): 609-613, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31435016

RESUMEN

Mitochondria provide chemical energy for endoergonic reactions in the form of ATP, and their activity must meet cellular energy requirements, but the mechanisms that link organelle performance to ATP levels are poorly understood. Here we confirm the existence of a protein complex localized in mitochondria that mediates ATP-dependent potassium currents (that is, mitoKATP). We show that-similar to their plasma membrane counterparts-mitoKATP channels are composed of pore-forming and ATP-binding subunits, which we term MITOK and MITOSUR, respectively. In vitro reconstitution of MITOK together with MITOSUR recapitulates the main properties of mitoKATP. Overexpression of MITOK triggers marked organelle swelling, whereas the genetic ablation of this subunit causes instability in the mitochondrial membrane potential, widening of the intracristal space and decreased oxidative phosphorylation. In a mouse model, the loss of MITOK suppresses the cardioprotection that is elicited by pharmacological preconditioning induced by diazoxide. Our results indicate that mitoKATP channels respond to the cellular energetic status by regulating organelle volume and function, and thereby have a key role in mitochondrial physiology and potential effects on several pathological processes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias Cardíacas/metabolismo , Canales de Potasio/metabolismo , Animales , Cardiotónicos/farmacología , Diazóxido/farmacología , Fenómenos Electrofisiológicos , Corazón/efectos de los fármacos , Corazón/fisiología , Precondicionamiento Isquémico Miocárdico , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/fisiología , Tamaño de los Órganos/efectos de los fármacos , Fosforilación Oxidativa , Potasio/metabolismo , Canales de Potasio/química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
3.
Nat Rev Mol Cell Biol ; 13(9): 566-78, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22850819

RESUMEN

During the past two decades calcium (Ca(2+)) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca(2+) uptake was shown to control intracellular Ca(2+) signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca(2+) levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca(2+) transporters has been revealed, opening new perspectives for investigation and molecular intervention.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Animales , Apoptosis , Autofagia , Canales de Calcio/metabolismo , Humanos , Modelos Biológicos
4.
Mol Cell ; 64(1): 148-162, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27642048

RESUMEN

Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca2+ homeostasis.


Asunto(s)
Canales de Calcio/metabolismo , Cerebelo/metabolismo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Metaloendopeptidasas/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Calcio/metabolismo , Canales de Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Muerte Celular , Cerebelo/patología , Cuerpo Estriado/patología , Regulación de la Expresión Génica , Células HEK293 , Hipocampo/patología , Homeostasis/genética , Humanos , Transporte Iónico , Metaloendopeptidasas/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Neuronas/patología , Mapeo de Interacción de Proteínas , Transducción de Señal
5.
Plant J ; 109(4): 1014-1027, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837294

RESUMEN

Precise measurements of dynamic changes in free Ca2+ concentration in the lumen of the plant endoplasmic reticulum (ER) have been lacking so far, despite increasing evidence for the contribution of this intracellular compartment to Ca2+ homeostasis and signalling in the plant cell. In the present study, we targeted an aequorin chimera with reduced Ca2+ affinity to the ER membrane and facing the ER lumen. To this aim, the cDNA for a low-Ca2+ -affinity aequorin variant (AEQmut) was fused to the nucleotide sequence encoding a non-cleavable N-terminal ER signal peptide (fl2). The correct targeting of fl2-AEQmut was confirmed by immunocytochemical analyses in transgenic Arabidopsis thaliana (Arabidopsis) seedlings. An experimental protocol well-established in animal cells - consisting of ER Ca2+ depletion during photoprotein reconstitution followed by ER Ca2+ refilling - was applied to carry out ER Ca2+ measurements in planta. Rapid and transient increases of the ER luminal Ca2+ concentration ([Ca2+ ]ER ) were recorded in response to different environmental stresses, displaying stimulus-specific Ca2+ signatures. The comparative analysis of ER and chloroplast Ca2+ dynamics indicates a complex interplay of these organelles in shaping cytosolic Ca2+ signals during signal transduction events. Our data highlight significant differences in basal [Ca2+ ]ER and Ca2+ handling by plant ER compared to the animal counterpart. The set-up of an ER-targeted aequorin chimera extends and complements the currently available toolkit of organelle-targeted Ca2+ indicators by adding a reporter that improves our quantitative understanding of Ca2+ homeostasis in the plant endomembrane system.


Asunto(s)
Aequorina/metabolismo , Arabidopsis/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Aequorina/genética , Animales , Arabidopsis/genética , Cloroplastos/metabolismo , Citosol/metabolismo , Homeostasis , Proteínas Luminiscentes/metabolismo , Plantones/metabolismo
6.
Mol Cell ; 53(5): 726-37, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24560927

RESUMEN

Mitochondrial calcium accumulation was recently shown to depend on a complex composed of an inner-membrane channel (MCU and MCUb) and regulatory subunits (MICU1, MCUR1, and EMRE). A fundamental property of MCU is low activity at resting cytosolic Ca(2+) concentrations, preventing deleterious Ca(2+) cycling and organelle overload. Here we demonstrate that these properties are ensured by a regulatory heterodimer composed of two proteins with opposite effects, MICU1 and MICU2, which, both in purified lipid bilayers and in intact cells, stimulate and inhibit MCU activity, respectively. Both MICU1 and MICU2 are regulated by calcium through their EF-hand domains, thus accounting for the sigmoidal response of MCU to [Ca(2+)] in situ and allowing tight physiological control. At low [Ca(2+)], the dominant effect of MICU2 largely shuts down MCU activity; at higher [Ca(2+)], the stimulatory effect of MICU1 allows the prompt response of mitochondria to Ca(2+) signals generated in the cytoplasm.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Aequorina/química , Calcio/química , Citoplasma/metabolismo , Citosol/metabolismo , Dimerización , Disulfuros , Electrofisiología/métodos , Silenciador del Gen , Células HeLa , Humanos , Inmunohistoquímica , Membrana Dobles de Lípidos/química , Mitocondrias/metabolismo , Unión Proteica , ARN Interferente Pequeño/metabolismo , Transducción de Señal
7.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36142664

RESUMEN

Non-thermal plasma technology is increasingly being applied in the plant biology field. Despite the variety of beneficial effects of plasma-activated water (PAW) on plants, information about the mechanisms of PAW sensing by plants is still limited. In this study, in order to link PAW perception to the positive downstream responses of plants, transgenic Arabidopsis thaliana seedlings expressing the Ca2+-sensitive photoprotein aequorin in the cytosol were challenged with water activated by low-power non-thermal plasma generated by a dielectric barrier discharge (DBD) source. PAW sensing by plants resulted in the occurrence of cytosolic Ca2+ signals, whose kinetic parameters were found to strictly depend on the operational conditions of the plasma device and thus on the corresponding mixture of chemical species contained in the PAW. In particular, we highlighted the effect on the intracellular Ca2+ signals of low doses of DBD-PAW chemicals and also presented the effects of consecutive plant treatments. The results were discussed in terms of the possibility of using PAW-triggered Ca2+ signatures as benchmarks to accurately modulate the chemical composition of PAW in order to induce environmental stress resilience in plants, thus paving the way for further applications in agriculture.


Asunto(s)
Aequorina , Arabidopsis , Calcio/farmacología , Calcio de la Dieta/farmacología , Citosol , Agua/farmacología
8.
Hum Mol Genet ; 28(11): 1782-1800, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649465

RESUMEN

Charcot-Marie-Tooth disease (CMT) type 2A is a form of peripheral neuropathy, due almost exclusively to dominant mutations in the nuclear gene encoding the mitochondrial protein mitofusin-2 (MFN2). However, there is no understanding of the relationship of clinical phenotype to genotype. MFN2 has two functions: it promotes inter-mitochondrial fusion and mediates endoplasmic reticulum (ER)-mitochondrial tethering at mitochondria-associated ER membranes (MAM). MAM regulates a number of key cellular functions, including lipid and calcium homeostasis, and mitochondrial behavior. To date, no studies have been performed to address whether mutations in MFN2 in CMT2A patient cells affect MAM function, which might provide insight into pathogenesis. Using fibroblasts from three CMT2AMFN2 patients with different mutations in MFN2, we found that some, but not all, examined aspects of ER-mitochondrial connectivity and of MAM function were indeed altered, and correlated with disease severity. Notably, however, respiratory chain function in those cells was unimpaired. Our results suggest that CMT2AMFN2 is a MAM-related disorder but is not a respiratory chain-deficiency disease. The alterations in MAM function described here could also provide insight into the pathogenesis of other forms of CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Retículo Endoplásmico/genética , GTP Fosfohidrolasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Adulto , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Retículo Endoplásmico/metabolismo , Metabolismo Energético/genética , Femenino , Fibroblastos/metabolismo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Membranas Mitocondriales/metabolismo , Mutación , Fosforilación Oxidativa , Índice de Severidad de la Enfermedad
9.
J Cell Mol Med ; 24(13): 7102-7114, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32490600

RESUMEN

Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.


Asunto(s)
Cardiotónicos/metabolismo , Canales Iónicos/metabolismo , Mitocondrias Cardíacas/metabolismo , Animales , Canales de Calcio/metabolismo , Humanos , Modelos Biológicos , Investigación Biomédica Traslacional
10.
Proc Natl Acad Sci U S A ; 114(43): E9006-E9015, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073097

RESUMEN

The mitochondrial Ca2+ uniporter complex (MCUC) is a multimeric ion channel which, by tuning Ca2+ influx into the mitochondrial matrix, finely regulates metabolic energy production. In the heart, this dynamic control of mitochondrial Ca2+ uptake is fundamental for cardiomyocytes to adapt to either physiologic or pathologic stresses. Mitochondrial calcium uniporter (MCU), which is the core channel subunit of MCUC, has been shown to play a critical role in the response to ß-adrenoreceptor stimulation occurring during acute exercise. The molecular mechanisms underlying the regulation of MCU, in conditions requiring chronic increase in energy production, such as physiologic or pathologic cardiac growth, remain elusive. Here, we show that microRNA-1 (miR-1), a member of the muscle-specific microRNA (myomiR) family, is responsible for direct and selective targeting of MCU and inhibition of its translation, thereby affecting the capacity of the mitochondrial Ca2+ uptake machinery. Consistent with the role of miR-1 in heart development and cardiomyocyte hypertrophic remodeling, we additionally found that MCU levels are inversely related with the myomiR content, in murine and, remarkably, human hearts from both physiologic (i.e., postnatal development and exercise) and pathologic (i.e., pressure overload) myocardial hypertrophy. Interestingly, the persistent activation of ß-adrenoreceptors is likely one of the upstream repressors of miR-1 as treatment with ß-blockers in pressure-overloaded mouse hearts prevented its down-regulation and the consequent increase in MCU content. Altogether, these findings identify the miR-1/MCU axis as a factor in the dynamic adaptation of cardiac cells to hypertrophy.


Asunto(s)
Canales de Calcio/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Aorta/citología , Canales de Calcio/genética , Cardiomegalia/metabolismo , Metabolismo Energético , Humanos , Ratones , MicroARNs/genética , Condicionamiento Físico Animal , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA