Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 23(6): 1167-1178, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38717721

RESUMEN

Temperature up-shift and UV-A radiation effects on growth, lipid damage, fatty acid (FA) composition and expression of desaturase genes desA and desB were investigated in the cyanobacteria Microcystis aeruginosa. Although UV-A damaging effect has been well documented, reports on the interactive effects of UV radiation exposure and warming on cyanobacteria are scarce. Temperature and UV-A doses were selected based on the physiological responses previously obtained by studies with the same M. aeruginosa strain used in this study. Cells pre-grown at 26 °C were incubated at the same temperature or 29 °C and exposed to UV-A + PAR and only PAR for 9 days. Growth rate was significantly affected by UV-A radiation independently of the temperature throughout the experiment. High temperature produced lipid damage significantly higher throughout the experiment, decreasing at day 9 as compared to 26 °C. In addition, the cells grown at 29 °C under UV-A displayed a decrease in polyunsaturated FA (PUFA) levels, with ω3 PUFA being mostly affected at the end of exposure. Previously, we reported that UV-A-induced lipid damage affects differentially ω3 and ω6 PUFAs. We report that UV-A radiation leads to an upregulation of desA, possibly due to lipid damage. In addition, the temperature up-shift upregulates desA and desB regardless of the radiation. The lack of lipid damage for UV-A on ω3 could explain the lack of transcription induction of desB. The significant ω6 decrease at 26 °C in cells exposed to UV-A could be due to the lack of upregulation of desA.


Asunto(s)
Ácido Graso Desaturasas , Ácidos Grasos , Microcystis , Temperatura , Rayos Ultravioleta , Microcystis/efectos de la radiación , Ácidos Grasos/metabolismo , Ácido Graso Desaturasas/metabolismo , Ácido Graso Desaturasas/genética , Aclimatación , Estrés Fisiológico
2.
Mol Ecol ; 32(4): 970-982, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461663

RESUMEN

Long-chain (≥C20 ) polyunsaturated fatty acids (LC-PUFAs) are physiologically important fatty acids for most animals, including humans. Although most LC-PUFA production occurs in aquatic primary producers such as microalgae, recent research indicates the ability of certain groups of (mainly marine) invertebrates for endogenous LC-PUFA biosynthesis and/or bioconversion from dietary precursors. The genetic pathways for and mechanisms behind LC-PUFA biosynthesis remain unknown in many invertebrates to date, especially in non-model species. However, the numerous genomic and transcriptomic resources currently available can contribute to our knowledge of the LC-PUFA biosynthetic capabilities of metazoans. Within our previously generated transcriptome of the benthic harpacticoid copepod Platychelipus littoralis, we detected expression of one methyl-end desaturase, one front-end desaturase, and seven elongases, key enzymes responsible for LC-PUFA biosynthesis. To demonstrate their functionality, we characterized eight of them using heterologous expression in yeast. The P. littoralis methyl-end desaturase has Δ15/17/19 desaturation activity, enabling biosynthesis of α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid (DHA) from 18:2 n-6, 20:4 n-6 and 22:5 n-6, respectively. Its front-end desaturase has Δ4 desaturation activity from 22:5 n-3 to DHA, implying that P. littoralis has multiple pathways to produce this physiologically important fatty acid. All studied P. littoralis elongases possess varying degrees of elongation activity for saturated and unsaturated fatty acids, producing aliphatic hydrocarbon chains with lengths of up to 30 carbons. Our investigation revealed a functionally diverse range of fatty acid biosynthesis genes in copepods, which highlights the need to scrutinize the role that primary consumers could perform in providing essential nutrients to upper trophic levels.


Asunto(s)
Ácido Eicosapentaenoico , Ácidos Grasos Insaturados , Humanos , Animales , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Genoma , Saccharomyces cerevisiae/genética , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo
3.
J Anim Physiol Anim Nutr (Berl) ; 107(5): 1302-1310, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37203287

RESUMEN

Body nutrient profiles in ecological studies allow for relating the nutritional status of consumers and their effects on the movement and retention of elements in ecosystems, as well as reflecting feeding conditions and habitat quality. This study compared the detailed whole-body nutrient composition (macronutrients, minerals, fatty acids and amino acids) of two omnivorous natives Orestias killifish from Lake Titicaca (Orestias agassizii and Orestias luteus, Valenciennes), the largest lake in the Andes, as an indirect tool to understand differences in their feeding ecology. Although both species are usually described as omnivorous fish, both have amphipods (Hyalella spp) as their main food source. Our results showed that both killifish had a comparable macronutrient composition, and the mineral concentrations of Mg, P and Ca (reflecting bony structures) differed between them. Many of the saturated fatty acids were significantly lower in O. luteus, and O. agassizii had higher concentrations of cis-vaccenic acid (18:1n11 (cis)), supporting the idea of a higher algal contribution to the diet of this fish. The lower histidine and higher taurine concentrations in O. agassizii compared with O. luteus (independent of body size) may reflect its ubiquitous behaviour and plasticity. This study shows how whole-body nutrient analysis can identify differences in feeding ecology and feeding behaviour between related species.


Asunto(s)
Fundulidae , Peces Killi , Animales , Lagos , Ecosistema , Nutrientes
4.
J Anim Ecol ; 91(3): 630-642, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951015

RESUMEN

Local food webs result from a sequence of colonisations and extinctions by species from the regional pool or metaweb, that is, the assembly process. Assembly is theorised to be a selective process: whether or not certain species or network structures can persist is partly determined by local processes including habitat filtering and dynamical constraints. Consequently, local food web structure should reflect these processes. The goal of this study was to test evidence for these selective processes by comparing the structural properties of real food webs to the expected distribution given the metaweb. We were particularly interested in ecological dynamics; if the network properties commonly associated with dynamical stability are indeed the result of stability constraints, then they should deviate from expectation in the direction predicted by theory. To create a null expectation, we used the novel approach of randomly assembling model webs by drawing species and interactions from the empirical metaweb. The assembly model permitted colonisation and extinction, and required a consumer species to have at least one prey, but had no habitat type nor population dynamical constraints. Three datasets were used: (a) the marine Antarctic metaweb, with two local food webs; (b) the 50 lakes of the Adirondacks; and (c) the arthropod community from Florida Keys' classic defaunation experiment. Contrary to our expectations, we found that there were almost no differences between empirical webs and those resulting from the null assembly model. Few empirical food webs showed significant differences with network properties, motif representations and topological roles. Network properties associated with stability did not deviate from expectation in the direction predicted by theory. Our results suggest that-for the commonly used metrics we considered-local food web structure is not strongly influenced by dynamical nor habitat restrictions. Instead, the structure is inherited from the metaweb. This suggests that the network properties typically attributed as causes or consequences of ecological stability are instead a by-product of the assembly process (i.e. spandrels), and may potentially be too coarse to detect the true signal of dynamical constraint.


Las redes tróficas locales son el resultado de una secuencia de eventos de colonización y extinción de especies que provienen del conjunto regional de especies o metaweb, es decir, el proceso de ensamble. Se teoriza que el ensamble es un proceso selectivo: si ciertas especies o estructuras de red pueden persistir o no está determinado en parte por procesos locales, incluido el filtrado del hábitat y las limitaciones dinámicas. En consecuencia, la estructura de la red trófica local debe reflejar estos procesos. El objetivo de este estudio fue analizar la evidencia de estos procesos selectivos comparando las propiedades estructurales de redes tróficas empíricas (locales) con la distribución esperada dada la metaweb. Nuestro particular interés fue la dinámica ecológica: si las propiedades de la red comúnmente asociadas con la estabilidad dinámica son el resultado de restricciones de estabilidad, entonces deberían desviarse de las expectativas en la dirección predicha por la teoría. Para crear una expectativa nula utilizamos el enfoque novedoso de ensamblar redes utilizando un modelo estocástico o 'modelo de ensamble nulo' que extrae especies e interacciones de una metaweb empírica. El modelo de ensamble incluye colonización y extinción, y requiere que los consumidores tengan al menos una presa, pero no tiene restricciones acerca del tipo de hábitat ni de dinámica de poblaciones. Se utilizaron tres conjuntos de datos: (a) la metaweb antártica marina, con 2 redes tróficas locales; (b) los 50 lagos de Adirondacks; y (c) la comunidad de artrópodos del experimento clásico de defaunación de los Cayos de la Florida. Contrariamente a lo esperado, encontramos que casi no hubo diferencias entre las redes empíricas (locales) y las resultantes del modelo de ensamble nulo. Pocas redes tróficas empíricas mostraron diferencias significativas con las propiedades de la red, los motivos y los roles topológicos. Las propiedades de la red asociadas con la estabilidad no se desviaron de las expectativas en la dirección predicha por la teoría. Nuestros resultados sugieren que-para las métricas de uso común que consideramos-la estructura de la red trófica local no está fuertemente influenciada por restricciones dinámicas o de hábitat. En cambio, la estructura se hereda de la metaweb. Esto sugiere que las propiedades de la red típicamente atribuidas como causas o consecuencias de la estabilidad ecológica son, en cambio, un subproducto del proceso de ensamble y podrían no tener la suficiente potencia para detectar la verdadera señal de restricción dinámica.


Asunto(s)
Artrópodos , Cadena Alimentaria , Animales , Regiones Antárticas , Ecosistema , Modelos Biológicos , Dinámica Poblacional
5.
J Fish Biol ; 101(4): 1047-1057, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35851662

RESUMEN

The transition from marine to fresh water is a challenging task for juvenile eels. This critical step in the early eels' life is preceded by a metamorphosis from the oceanic larval to the continental glass eel stage, requiring major energy-demanding morphological, physiological and behavioural modifications during which time these animals do not feed. The success of the glass eels' inland migration after metamorphosis will largely depend on remaining energy levels, which can be supplemented only by resuming food uptake. Although it is crucial for their survival and the maintenance of the population, the feeding behaviour of glass eels is still an understudied aspect of the eels' complex life cycle. Many uncertainties about the phenology, diet, potential prey preferences and their relation with migration modus (migratory vs. sedentary) still remain. In this study, the authors analysed the stomach and gut contents of 458 European glass eels (Anguilla anguilla L. 1758) captured in a drainage canal connecting a small mesotidal estuary with an adjacent polder area during the spring migration seasons of 2016 and 2017. They demonstrated that although glass eels started feeding briefly upon arrival in the estuary, food uptake for early arrivals was restricted to a minority that sparsely feed on detritus and some worm-like benthic invertebrates. Along the season, food uptake intensified eventually engaging all glass eels and their dietary palette diversified including a wide array of planktonic and benthic organisms. Crustacean plankton (mainly cyclopoid copepods) was an important part of the glass eel diet, whereas benthic oligochaetes were less abundant as food source in spite of their high presence in the sediments. No clear differences in feeding behaviour could be observed between migratory and sedentary glass eels. This study showed that glass eels can use highly artificial and dynamic drainage canals as feeding ground during their critical marine/freshwater transition. This outcome is also a plea to improve the accessibility of alternative (unnatural) migration routes between the ocean and suitable freshwater growth habitats for the European eel.


Asunto(s)
Anguilla , Animales , Anguilla/fisiología , Estuarios , Conducta Alimentaria , Larva , Océanos y Mares , Plancton , Migración Animal
6.
Photochem Photobiol Sci ; 20(6): 805-821, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34081307

RESUMEN

The combined effects of increased temperature and solar ultraviolet radiation (UVR, 280-400 nm) on M. aeruginosa cultures was analyzed in terms of cell abundance, reactive oxygen and nitrogen species (ROS/RNS), antioxidant activity of catalase (CAT), superoxide dismutase (SOD), glutathione S transferase (GST), fatty acids (FA) content and lipid damage. After 12 days exposure to high temperature (29 °C), cells were exposed to solar UVR (4 h). Ultraviolet-B radiation (UVBR, 280-315 nm) resulted into low cell abundance, high ROS/RNS and a significant increase in SOD activity with no changes in GST and a decreased CAT activity at control temperature (26 °C). A significant increase in the analyzed enzymatic antioxidants was observed at 29 °C, as a response to avoid ultraviolet-A radiation (UVAR, 315-400 nm) damage. The relative abundance of ω6 FAs was not affected by UVAR while ω3 FA were highly sensitive at 29 °C but unsaturated fatty acids (UFA) peroxidation did not occur. The differential response in FA to high temperature and UVAR results in differences in lipid damage and antioxidants. It was evident that selected UFAs (mostly ω6) play an important role in high temperature adaptation in addition to enzymatic antioxidant increased activity shifting the temperature growth from 26 to 29 °C. Thus, cell death and UFA damage were avoided at high temperature and low solar irradiance thanks to an increased enzymatic antioxidant activity.


Asunto(s)
Ácidos Grasos/metabolismo , Microcystis/metabolismo , Temperatura , Rayos Ultravioleta
7.
Int J Syst Evol Microbiol ; 70(3): 1706-1719, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31909708

RESUMEN

Four Gram-negative, aerobic, rod-shaped and yellow-orange pigmented bacteria (R-46770, R-48165T, R-50232 and R-50233) were isolated from intertidal sediment and water of the Westerschelde estuary between 2006 and 2012. Analysis of their 16S rRNA gene sequences revealed that the four strains form a separate cluster between validly described type strains of the genus Leeuwenhoekiella. DNA-DNA reassociation values of two representative strains (i.e. R-48165T and R-50232) of the new group with type strains of Leeuwenhoekiella species ranged from 18.7 to 56.6 %. A comparative genome analysis of the two strains and the type strains confirmed average nucleotide identity values from 75.6 to 94.4 %. The G+C contents of the genomic DNA of strains R-48165T and R-50232 were 37.80 and 37.83 mol%, respectively. The predominant cellular fatty acids of the four novel strains were summed feature 3 (i.e. C16 : 1ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The four new Leeuwenhoekiella-like strains grew with 0.5-12 % (w/v) NaCl, at pH 5.5-9.0 and displayed optimum growth between 20 and 30 °C. Based on the results of phenotypic, genomic, phylogenetic and chemotaxonomic analyses, the four new strains represent a novel species of the genus Leeuwenhoekiella for which the name Leeuwenhoekiella aestuarii sp. nov. is proposed. The type strain is LMG 30908T (=R-48165T=CECT 9775T=DSM 107866T). Genome analysis of type strains of the genus Leeuwenhoekiella revealed a large number of glycosyl hydrolases, peptidases and carboxyl esterases per Mb, whereas the number of transporters per Mb was low compared to other bacteria. This confirmed the environmental role of Leeuwenhoekiella species as (bio)polymer degraders, with a specialization on degrading proteins and high molecular weight compounds. Additionally, the presence of a large number of genes involved in gliding motility and surface adhesion, and large numbers of glycosyl transferases per Mb confirmed the importance of these features for Leeuwenhoekiella species.


Asunto(s)
Flavobacteriaceae/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Estuarios , Ácidos Grasos/química , Flavobacteriaceae/aislamiento & purificación , Países Bajos , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Extremophiles ; 23(3): 359-365, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30810807

RESUMEN

The use of stable isotope (SI) labelling and tracing of live diets is currently considered one of the most comprehensive tools to detect their uptake and assimilation by aquatic organisms. These techniques are indeed widely used in nutritional studies to follow the fate of specific microbial dietary components, unraveling trophic interactions. Nevertheless, to the current date our understanding of aquatic trophic relationships has yet to include a whole domain of life, the Archaea. The aim of the present research was, therefore, to describe a halophilic Archaea (haloarchaea) labelling procedure, using the SI 13C and 15N, to enable the application of SI tracing in future studies of haloarchaea consumption by aquatic metazoans. To this end, three 13C enriched carbon sources and two 15N enriched nitrogen sources were tested as potential labels to enrich cells of three haloarchaea strains when supplemented to the culture medium. Our overall results indicate 13C-glycerol as the most effective carbon source to achieve an efficient 13C enrichment in haloarchaea cells, with Δδ13C values above 5000‰ in all tested haloarchaea strains. As for 15N enriched nitrogen sources, both (15NH4)2SO4 and 15NH4Cl seem to be readily assimilated, also resulting in efficient 15N enrichment in haloarchaea cells, with Δδ15N values higher than 20,000‰. We believe that the proposed methodology will allow for the use of SI labelled haloarchaea biomass in feeding tests, potentially providing unambiguous confirmation of the assimilation of haloarchaea biomass by aquatic metazoans.


Asunto(s)
Biomasa , Isótopos de Carbono/química , Cadena Alimentaria , Halobacteriales/crecimiento & desarrollo , Marcaje Isotópico/métodos , Isótopos de Nitrógeno/química , Animales
9.
Mol Biol Rep ; 46(6): 6565-6569, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31402429

RESUMEN

Assessing population genetic structure is a crucial step to support fisheries and conservation management. DNA microsatellite molecular markers are a widely used tool in population genotyping. In the present study, we characterised and developed 14 novel polymorphic microsatellite markers for a decapod crustacean, the Atlantic seabob shrimp Xiphopenaeus kroyeri (Heller, 1862), through rapid and cost-effective Illumina shotgun sequencing and a Galaxy-based bioinformatic pipeline. We genotyped 60 individuals from 2 populations with the newly developed microsatellites, resulting in the detection of 3 to 29 alleles per locus. Four loci deviated from Hardy-Weinberg equilibrium. Cross-amplification in a cryptic congeneric species was successful for eight loci (57%). The microsatellite loci developed in this study will be highly relevant for genetic and evolutionary studies of X. kroyeri, and for the stock management of this commercially exploited species.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Repeticiones de Microsatélite , Penaeidae/genética , Animales , Frecuencia de los Genes , Sitios Genéticos , Marcadores Genéticos , Genética de Población , Análisis de Secuencia de ADN
10.
Ecol Appl ; 28(5): 1342-1353, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29698586

RESUMEN

Human activities increasingly impact the functioning of marine food webs, but anthropogenic stressors are seldom included in ecological study designs. Diet quality, as distinct from just diet quantity, has moreover rarely been highlighted in food web studies in a stress context. We measured the effects of metal and pesticide stress (copper and atrazine) on the contribution of a benthic intertidal diatom community to two processes that are key to the functioning of intertidal systems: biomass (diet quantity) and lipid (diet quality) production. We then examined if stressors affected diatom functioning by selectively targeting the species contributing most to functioning (selective stress effects) or by changing the species' functional contribution (context-dependent effects). Finally, we tested if stress-induced changes in diet quality altered the energy flow to the diatoms' main grazers (harpacticoid copepods). Diatom diet quantity was reduced by metal stress but not by low pesticide levels due to the presence of an atrazine-tolerant, mixotrophic species. Selective effects of the pesticide reduced diatom diet quality by 60% and 75% at low and high pesticide levels respectively, by shifting diatom community structure from dominance by lipid-rich species toward dominance by an atrazine-tolerant, but lipid-poor, species. Context-dependent effects did not affect individual diatom lipid content at low levels of both stressors, but caused diatoms to lose 40% of their lipids at high copper stress. Stress-induced changes in diet quality predicted the energy flow from the diatoms to their copepod consumers, which lost half of their lipids when feeding on diatoms grown under low and high pesticide and high metal stress. Selective pesticide effects were a more important threat for trophic energy transfer than context-dependent effects of both stressors, with shifts in diatom community structure affecting the energy flow to their copepod grazers at stress levels where no changes in diatom lipid content were detected.


Asunto(s)
Atrazina/toxicidad , Copépodos/fisiología , Cobre/toxicidad , Diatomeas/efectos de los fármacos , Cadena Alimentaria , Contaminantes Químicos del Agua/toxicidad , Animales , Biomasa , Copépodos/efectos de los fármacos , Diatomeas/fisiología , Herbicidas/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos
11.
Ecotoxicol Environ Saf ; 156: 9-17, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29524781

RESUMEN

Pesticides and metals are often used in agriculture and are therefore often simultaneously discharged to nearby estuarine and marine areas. The effects of this organic-inorganic chemical mixture on food quality of aquatic organisms are currently unknown. In this study we test if a mixture of copper (inorganic) and the herbicide Primextra® Gold TZ (organic) affects the quality of the diatom Thalassiosira weissflogii and the copepod Acartia tonsa - two key species that fuel the local food-web. We quantified quality (i.e. energy content as food for the next trophic level) in terms of fatty acids, proteins and thiobarbituric acid reacting substances. We found non-additive effects (positive and negative) of the metal-herbicide mixture on the diatom and copepod species. In general, nutritionally important biochemical parameters of Acartia tonsa were most sensitive to the chemical stressors.


Asunto(s)
Acetamidas/toxicidad , Atrazina/toxicidad , Cobre/toxicidad , Herbicidas/toxicidad , Plancton/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Copépodos/efectos de los fármacos , Diatomeas/efectos de los fármacos , Combinación de Medicamentos , Plancton/química
13.
J Therm Biol ; 57: 44-53, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27033038

RESUMEN

Dietary lipids, and in particular the essential fatty acids (EFA), EPA (20:5ω3) and DHA (22:6ω3), guarantee the well-being of animals and are recognized for their potential bottom-up control on animal populations. They are introduced in marine ecosystems through primary producers and when grazed upon, they are consumed, incorporated or modified by first-level consumers. As the availability of EFA in the ecosystem is affected by ambient temperature, the predicted rise in ocean temperature might alter the availability of these EFA at the basis of marine food webs. Despite the FA bioconversion capacity of certain benthic copepod species, their lipid (FA) response to varying temperatures is understudied. Therefore, the temperate, intertidal copepod Platychelipus littoralis was offered a mono and mixed diatom diet at 4, 15 °C (normal range) and at 24 °C (elevated temperature) to investigate the combined effects of temperature and resource availability on its FA content and composition. P. littoralis showed a flexible thermal acclimation response. Cold exposure increased the degree of FA unsaturation and the EPA%, and induced a shift towards shorter chain FA in the copepod's membranes. Furthermore, a mixed diet reduced the impact of heat stress on the copepod's membrane FA composition. Temperature affected the trophic transfer of EPA and DHA differently. While dietary resources could fully compensate for the temperature effects on total lipid and EPA content in the copepods, no such counterweigh was observed for the DHA dynamics. Heat stress lowered the DHA concentration in copepods regardless of the resources available and this implies negative effects for higher trophic levels.


Asunto(s)
Respuesta al Choque por Frío , Copépodos/metabolismo , Dieta , Ácidos Grasos/metabolismo , Respuesta al Choque Térmico , Animales , Membrana Celular/metabolismo , Copépodos/fisiología , Cadena Alimentaria
14.
Mar Pollut Bull ; 201: 116265, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493676

RESUMEN

The effects of climate change are becoming more prevalent, and it is important to know how copepods, the most abundant class in zooplankton, will react to changing temperatures as they are the main food source for secondary consumers. They act as key transferers of nutrients from primary producers to organisms higher up the food chain. Little is known about the effects of temperature changes on copepods on the long term, i.e., over several generations. Especially the epigenetic domain seems to be understudied and the question remains whether the nutritional value of copepods will permanently change with rising water temperatures. In this research, the effects of temperature on the fatty acid and epigenetic profiles of the abundant planktonic copepod Acartia tonsa were investigated, since we expect to see a link between these two. Indeed, changing methylation patterns helped copepods to deal with higher temperatures, which is in line with the relative abundance of the most important fatty acids, e.g., DHA. However, this pattern was only observed when temperature increased slowly. A sudden increase in temperature showed the opposite effect; Acartia tonsa did not show deviant methylation patterns and the relative abundance of DHA and other important fatty acids dropped significantly after several generations. These results suggest that local fluctuations in temperature have a greater effect on Acartia tonsa than an elevation of the global mean.


Asunto(s)
Copépodos , Animales , Copépodos/genética , Ácidos Grasos , Cadena Alimentaria , Océanos y Mares , Epigénesis Genética
15.
Sci Total Environ ; 862: 160730, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496027

RESUMEN

Offshore wind farms (OWFs) and their associated cables, foundations and scour protection are often constructed in soft-sediment environments. This introduction of hard substrate has been shown to have similar effects as artificial reefs by providing food resources and offering increased habitat complexity, thereby aggregating fish around the turbines and foundations. However, as most studies have focused their efforts on fish species that are typically associated with reef structures, knowledge on how soft sediment species are affected by OWFs is still largely lacking. In this study, we analysed the trophic ecology and condition of plaice, a flatfish species of commercial interest, in relation to a Belgian OWF. The combination of a stomach and intestine content analysis with the use of biomarkers (i.e. fatty acids and stable isotopes) identified a clear shift in diet with increased occurrences of typical hard-substrate prey species for fish in the vicinity of the foundations and this both on the short and the long term. Despite some condition indices suggesting that the hard substrate provides increased food availability, no clear increases of overall plaice condition or fecundity were found. Samples from within the wind farm, however, contained larger fish and had a higher abundance of females compared to control areas, potentially indicating a refuge effect caused by the cessation of fisheries activities within the OWF. These results suggest that soft-sediment species can potentially benefit from the presence of an OWF, which could lead to fish production. However, more research is still needed to further elucidate the behavioral ecology of plaice within OWFs to make inferences on how they can impact fish populations on a larger spatial scale.


Asunto(s)
Lenguado , Animales , Fuentes Generadoras de Energía , Viento , Ecosistema , Estado Nutricional , Peces
16.
Environ Sci Pollut Res Int ; 30(31): 76936-76949, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37248352

RESUMEN

Environmental characteristics influence the fatty acids (FAs) of aquatic organisms. Environmental factors and anthropic actions such as water pollution can impact FA composition. This directly affects the trophic network, especially when low-quality FA is provided to other trophic levels. The omnivore Penaeoidea shrimp is rich in proteins and polyunsaturated fatty acids (PUFA), representing an important node in the trophic web. We compared the FA composition of the commercially exploited seabob shrimp Xiphopenaeus spp. in two distinct coastal sites, Cananéia and Ubatuba, on the southeast Brazilian coast. Cananéia has a low human population density and is a preserved area with nearby mangroves, while Ubatuba is highly urbanised and influenced by tourism (increasing the domestic sewage), with diverse microhabitats but without mangrove influence. We found a total of 29 different FAs in seabob shrimp samples. Saturated FAs and PUFAS were the most representatives. For sex or age (juvenile and adult), deviations were found in the monosaturated FA, ω6, and ω3/ω6. However, FA composition was significantly different between sites, with Ubatuba presenting a lower abundance of FAs than Cananéia. The fatty acid composition of Xiphopenaeus spp. was influenced by environmental quality factors such as dissolved oxygen, chlorophyll, organic matter, and size gradient. The presence of high amounts of organic matter (especially sewage) during decomposition can decrease dissolved oxygen levels, reducing the quality of the first producers and limiting the availability of FAs for other trophic levels. The study suggests that water pollution and mangrove forests can impact the FAs of Xiphopenaeus spp., potentially reducing their nutritional value and causing an imbalance in the transference of FAs.


Asunto(s)
Ácidos Grasos Omega-3 , Ácidos Grasos , Adulto , Humanos , Ácidos Grasos/metabolismo , Brasil , Aguas del Alcantarillado , Ácidos Grasos Insaturados , Ácidos Grasos Omega-3/metabolismo
17.
Mol Ecol ; 21(21): 5336-47, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22989315

RESUMEN

Nannopus palustris Brady, 1880 is a free-living widely distributed harpacticoid copepod, which has been formerly assumed to be a single, cosmopolitan but highly variable species. We compared several geographically distant N. palustris populations in terms of their morphology and genetics. Populations from the White Sea (WS), the North Sea (NS), the Black Sea (BS) and two sympatric morphs from South Carolina, USA (SC notched and SC straight morphs), were considered. The NS, BS and to a lesser extent SC notched specimens were morphologically similar and partly coincided to the 'canonical' description of the species. By contrast, WS population showed remarkable anatomical and morphometric peculiarities that correspond to some earlier descriptions. Genetic analyses of mitochondrial (cytochrome b) and nuclear (28S rDNA) genes demonstrated the significant distinctness among WS, both SC and (NS+BS) populations, the latter two being genetically indistinguishable. Concordance between mitochondrial and nuclear gene trees and morphological data supports that N. palustris is in fact composed of several pseudo-sibling species, which are genetically and morphologically divergent. Neither correlation between genetic divergence and geographical distance nor significant intrapopulation diversity was found for these species. Taxonomic status, distribution and phylogenetic relationships of the species within the Nannopus genus need to be reconsidered. A further subdivision of species complexes might have important implications for the analysis of biodiversity of benthic copepods and consequently for the interpretation of their (species-specific) ecological function.


Asunto(s)
Copépodos/clasificación , Variación Genética , Filogenia , Animales , Biodiversidad , Mar Negro , Copépodos/anatomía & histología , Copépodos/genética , Femenino , Geografía , Masculino , Datos de Secuencia Molecular , Mar del Norte , Análisis de Secuencia de ADN , Razón de Masculinidad , South Carolina
18.
Photochem Photobiol ; 98(4): 886-893, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34695237

RESUMEN

In bacteria, exposure to changes in environmental conditions can alter membrane fluidity, thereby affecting its essential functions in cell physiology. To adapt to these changes, bacteria maintain appropriate fluidity by varying the composition of the fatty acids of membrane phospholipids, a phenomenon known as homeophasic adaptation. In Pseudomonas aeruginosa, this response is achieved mainly by two mechanisms of fatty acid desaturation: the FabA-FabB and DesA-DesB systems. This study analyzed the effect of ultraviolet-A (UVA) radiation-the major fraction of solar UV radiation reaching the Earth's surface-on the homeophasic process. The prototypical strain PAO1 was grown under sublethal UVA doses or in the dark, and the profiles of membrane fatty acids were compared at early logarithmic, logarithmic and stationary growth phases. In the logarithmic growth phase, it was observed that growth under sublethal UVA doses induced the expression of the desaturase-encoding genes desA and desB and increased the proportion of unsaturated fatty acids; in addition, membrane fluidity could also increase, as suggested by the indices used as indicators of this parameter. The opposite effect was observed in the stationary growth phase. These results demonstrate the relevant role of UVA on the homeophasic response at transcriptional level.


Asunto(s)
Ácidos Grasos , Pseudomonas aeruginosa , Adaptación Fisiológica/genética , Fosfolípidos , Rayos Ultravioleta
19.
Artículo en Inglés | MEDLINE | ID: mdl-33130072

RESUMEN

The success of Limnoperna fortunei as an invasive freshwater bivalve species is related to its physiological plasticity to endure changes in environmental conditions. The aim of this study was to investigate the physiological responses of L. fortunei after feeding on Microcystis aeruginosa grown at 26 °C (control) and 29 °C during 10 days. At the beginning, we measured biomass, fatty acids (FAs) composition on Cyanobacteria grown at both temperatures at different time intervals. Afterwards, mussels were fed with the thawed M. aeruginosa cells and their FA profile was measured after 15 days of feeding. M. aeruginosa exposed to 29 °C had the highest content of the FAs 18:2ω6 and cis-18:1ω9. The FA profile of the consumer L. fortunei fed with M. aeruginosa cultures grown at 29 °C was also significantly different to those fed with cultures grown at 26 °C, with a significant increased Eicosapentaenoic acid (EPA, 20:5ω3) and Arachidonic acid (ARA, 20:4ω6) concentrations. L. fortunei was already known to be physiologically adapted to live at 29 °C, but our results also shown a high biosynthesis of EPA and ARA (increase of 70 and 40% respectively, compared with 26 °C) and avoided the lipid peroxidation of both FAs. This increased EPA and ARA biosynthesis may be an important source of ω3 and ω6 polyunsaturated FAs (PUFAs) for higher trophic levels, such as the pelagic fishes or birds that mainly prey on these mussels. The transfer of the cyanobacterial response at higher temperature to higher trophic levels will influence the overall functioning of freshwater bodies.


Asunto(s)
Ácidos Grasos/metabolismo , Calor , Microcystis/fisiología , Mytilidae/fisiología , Adaptación Fisiológica/fisiología , Animales , Ácido Araquidónico/metabolismo , Ácido Eicosapentaenoico/metabolismo , Conducta Alimentaria , Agua Dulce , Mytilidae/metabolismo
20.
Mar Biotechnol (NY) ; 23(6): 892-903, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34714443

RESUMEN

The phylum Mollusca represents one of the largest groups of marine invertebrates. Nowadays, molluscan shellfish belonging to the classes Bivalvia and Gastropoda are of commercial interest for fisheries and aquaculture. Although bioactive properties of bivalve molluscs have been widely investigated and several dietary supplements have been brought to the market, the bioactive potentialities of marine gastropods are poorly documented. The present study investigated the bioactive properties of tissue extracts derived from Haliotis tuberculata coccinea, or "European abalone," an edible abalone species distributed in the Mediterranean Sea and the northeast Atlantic Ocean. A bioactive organic compound-rich extract was obtained using ethyl acetate as extracting solvent. It showed antimicrobial activity towards the methicillin-resistant Staphylococcus epidermidis strain RP62A, the emerging multi-drug-resistant Stenotrophomonas maltophilia D71 and Staphylococcus aureus ATCC 6538P, being the most sensitive strain. It also showed anthelmintic activity, evaluated through the toxicity against the target model helminth Caenorhabditis elegans. In addition, the ethyl acetate extract demonstrated a selective cytotoxic activity on the cancer cell lines A375, MBA-MD 231, HeLa, and MCF7, at the concentration of 250 µg/mL. The fatty acid composition of the bioactive extract was also investigated through FAME analysis. The fatty acid profile showed 45% of saturated fatty acids (SAFA), 22% of monounsaturated fatty acids (MUFA), and 33% of polyunsaturated fatty acids (PUFA). The presence of some biologically important secondary metabolites in the extract was also analysed, revealing the presence of alkaloids, terpenes, and flavonoids.


Asunto(s)
Bivalvos , Gastrópodos , Staphylococcus aureus Resistente a Meticilina , Acetatos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA