Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216335

RESUMEN

Chronic low-grade inflammation is a hallmark of aging, which is now coined as inflamm-aging. Inflamm-aging contributes to many age-associated diseases such as obesity, type 2 diabetes, cardiovascular disease, and inflammatory bowel disease (IBD). We have shown that gut hormone ghrelin, via its receptor growth hormone secretagogue receptor (GHS-R), regulates energy metabolism and inflammation in aging. Emerging evidence suggests that gut microbiome has a critical role in intestinal immunity of the host. To determine whether microbiome is an integral driving force of GHS-R mediated immune-metabolic homeostasis in aging, we assessed the gut microbiome profiles of young and old GHS-R global knockout (KO) mice. While young GHS-R KO mice showed marginal changes in Bacteroidetes and Firmicutes, aged GHS-R KO mice exhibited reduced Bacteroidetes and increased Firmicutes, featuring a disease-susceptible microbiome profile. To further study the role of GHS-R in intestinal inflammation in aging, we induced acute colitis in young and aged GHS-R KO mice using dextran sulfate sodium (DSS). The GHS-R KO mice showed more severe disease activity scores, higher proinflammatory cytokine expression, and decreased expression of tight junction markers. These results suggest that GHS-R plays an important role in microbiome homeostasis and gut inflammation during aging; GHS-R suppression exacerbates intestinal inflammation in aging and increases vulnerability to colitis. Collectively, our finding reveals for the first time that GHS-R is an important regulator of intestinal health in aging; targeting GHS-R may present a novel therapeutic strategy for prevention/treatment of aging leaky gut and inflammatory bowel disease.


Asunto(s)
Envejecimiento/metabolismo , Colitis/metabolismo , Disbiosis/metabolismo , Receptores de Ghrelina/metabolismo , Animales , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Microbioma Gastrointestinal/fisiología , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/fisiología , Obesidad/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G451-G463, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31905023

RESUMEN

Consumption of a high-fat diet has been associated with an increased risk of developing colorectal cancer (CRC). However, the effects of the interaction between dietary fat content and the aryl hydrocarbon receptor (AhR) on colorectal carcinogenesis remain unclear. Mainly known for its role in xenobiotic metabolism, AhR has been identified as an important regulator for maintaining intestinal epithelial homeostasis. Although previous research using whole body AhR knockout mice has revealed an increased incidence of colon and cecal tumors, the unique role of AhR activity in intestinal epithelial cells (IECs) and modifying effects of fat content in the diet at different stages of sporadic CRC development are yet to be elucidated. In the present study, we have examined the effects of a high-fat diet on IEC-specific AhR knockout mice in a model of sporadic CRC. Although loss of AhR activity in IECs significantly induced the development of premalignant lesions, in a separate experiment, no significant changes in colon mass incidence were observed. Moreover, consumption of a high-fat diet promoted cell proliferation in crypts at the premalignant colon cancer lesion stage and colon mass multiplicity as well as ß-catenin expression and nuclear localization in actively proliferating cells in colon masses. Our data demonstrate the modifying effects of high-fat diet and AhR deletion in IECs on tumor initiation and progression.NEW & NOTEWORTHY Through the use of an intestinal-specific aryl hydrocarbon receptor (AhR) knockout mouse model, this study demonstrates that the expression of AhR in intestinal epithelial cells is required to reduce the formation of premalignant colon cancer lesions. Furthermore, consumption of a high-fat diet and the loss of AhR in intestinal epithelial cells influences the development of colorectal cancer at various stages.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Transformación Celular Neoplásica/metabolismo , Colon/metabolismo , Neoplasias del Colon/metabolismo , Dieta Alta en Grasa , Células Epiteliales/metabolismo , Eliminación de Gen , Mucosa Intestinal/metabolismo , Lesiones Precancerosas/metabolismo , Receptores de Hidrocarburo de Aril/deficiencia , Animales , Azoximetano , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Colon/patología , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Daño del ADN , Modelos Animales de Enfermedad , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , beta Catenina/genética , beta Catenina/metabolismo
3.
Microb Cell Fact ; 19(1): 219, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256731

RESUMEN

BACKGROUND: Diet, loss of aryl hydrocarbon receptor (AhR) expression and their modification of the gut microbiota community composition and its metabolites affect the development of colorectal cancer (CRC). However, the concordance between fecal microbiota composition and the fecal metabolome is poorly understood. Mice with specific AhR deletion (AhRKO) in intestinal epithelial cell and their wild-type littermates were fed a low-fat diet or a high-fat diet. Shifts in the fecal microbiome and metabolome associated with diet and loss of AhR expression were assessed. Microbiome and metabolome data were integrated to identify specific microbial taxa that contributed to the observed metabolite shifts. RESULTS: Our analysis shows that diet has a more pronounced effect on mouse fecal microbiota composition than the impact of the loss of AhR. In contrast, metabolomic analysis showed that the loss of AhR in intestinal epithelial cells had a more pronounced effect on metabolite profile compared to diet. Integration analysis of microbiome and metabolome identified unclassified Clostridiales, unclassified Desulfovibrionaceae, and Akkermansia as key contributors to the synthesis and/or utilization of tryptophan metabolites. CONCLUSIONS: Akkermansia are likely to contribute to the synthesis and/or degradation of tryptophan metabolites. Our study highlights the use of multi-omic analysis to investigate the relationship between the microbiome and metabolome and identifies possible taxa that can be targeted to manipulate the microbiome for CRC treatment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Dieta , Heces/microbiología , Metaboloma , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Akkermansia/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias del Colon/microbiología , ADN Bacteriano , Femenino , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , ARN Ribosómico 16S , Receptores de Hidrocarburo de Aril/genética
4.
Curr Oncol Rep ; 20(8): 59, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29869224

RESUMEN

PURPOSE OF REVIEW: Flaxseed and its bioactive components have been associated with a decreased risk of colorectal cancer incidence and progression. This review aims to summarize recent research regarding the role of flaxseed and each of its major dietary bioactive components in reducing colorectal cancer. RECENT FINDINGS: In both human and animal model experiments, flaxseed consumption had beneficial effects on colon physiology associated with reduction in colorectal cancer risk or occurrence. Considered separately, each of flaxseed's major bioactive components, including fiber, alpha-linolenic acid, lignans, and other phytochemicals, is also associated with decreased risk of colonic neoplasms and regulation of cell growth through several potential mechanisms. Collectively, experimental data suggests that consumption of flaxseed and/or its bioactive components may reduce colorectal cancer risk by a variety of mechanisms. Future studies should focus on the mechanisms by which whole flaxseed can prevent colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/prevención & control , Lino , Fitoquímicos/química , Semillas/química , Animales , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Fibras de la Dieta/farmacología , Humanos , Lignanos/farmacología , Fitoquímicos/farmacología , Ácido alfa-Linolénico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA