Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Synapse ; 73(4): e22080, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30447016

RESUMEN

Using fast-scan cyclic voltammetry paired with pharmacology, the authors show that infralimbic catecholamine release following locus coeruleus stimulation is noradrenergic, but not dopaminergic, and not affected by acute ethanol. With previous work, these data suggest differential effects of ethanol on prefrontal norepinephrine and dopamine, a region important in addiction-related pathways.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Locus Coeruleus/fisiología , Norepinefrina/metabolismo , Corteza Prefrontal/metabolismo , Animales , Potenciales Evocados , Locus Coeruleus/efectos de los fármacos , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas , Ratas Long-Evans
2.
J Undergrad Neurosci Educ ; 13(1): A8-A20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25565921

RESUMEN

The University of New England's Center for Excellence in the Neurosciences has developed a successful and growing K-12 outreach program that incorporates undergraduate and graduate/professional students. The program has several goals, including raising awareness about fundamental issues in neuroscience, supplementing science education in area schools and enhancing undergraduate and graduate/professional students' academic knowledge and skill set. The outreach curriculum is centered on core neuroscience themes including: Brain Safety, Neuroanatomy, Drugs of Abuse and Addiction, Neurological and Psychiatric Disorders, and Cognition and Brain Function. For each theme, lesson plans were developed based upon interactive, small-group activities. Additionally, we've organized our themes in a "Grow-up, Grow-out" approach. Grow-up refers to returning to a common theme, increasing in complexity as we revisit students from early elementary through high school. Grow-out refers to integrating other scientific fields into our lessons, such as the chemistry of addiction, the physics of brain injury and neuronal imaging. One of the more successful components of our program is our innovative team-based model of curriculum design. By creating a team of undergraduate, graduate/professional students and faculty, we create a unique multi-level mentoring opportunity that appears to be successful in enhancing undergraduate students' skills and knowledge. Preliminary assessments suggest that undergraduates believe they are enhancing their content knowledge and professional skills through our program. Additionally, we're having a significant, short-term impact on K-12 interest in science. Overall, our program appears to be enhancing the academic experience of our undergraduates and exciting K-12 students about the brain and science in general.

3.
Biol Psychiatry Glob Open Sci ; 4(1): 51-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38058990

RESUMEN

Background: Contextual fear learning is heavily dependent on the hippocampus. Despite evidence that catecholamines contribute to contextual encoding and memory retrieval, the precise temporal dynamics of their release in the hippocampus during behavior is unknown. In addition, new animal models are required to probe the effects of altered catecholamine synthesis on release dynamics and contextual learning. Methods: We generated 2 new mouse models of altered locus coeruleus-norepinephrine (NE) synthesis and utilized them together with GRABNE and GRABDA sensors and in vivo fiber photometry to investigate NE and dopamine (DA) release dynamics in the dorsal hippocampal CA1 during contextual fear conditioning. Results: Aversive foot shock increased both NE and DA release in the dorsal CA1, while freezing behavior associated with recall of fear memory was accompanied by decreased release. Moreover, we found that freezing at the recent time point was sensitive to both partial and complete loss of locus coeruleus-NE synthesis throughout prenatal and postnatal development, similar to previous observations of mice with global loss of NE synthesis beginning postnatally. In contrast, freezing at the remote time point was compromised only by complete loss of locus coeruleus-NE synthesis beginning prenatally. Conclusions: Overall, these findings provide novel insights into the role of NE in contextual fear and the precise temporal dynamics of both NE and DA during freezing behavior and highlight complex relationships between genotype, sex, and NE signaling.

4.
Biomolecules ; 13(1)2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36671420

RESUMEN

The present study aimed to explore the consequences of a single exposure to a social defeat on dopamine release in the rat nucleus accumbens measured with a fast-scan cyclic voltammetry. We found that 24 h after a social defeat, accumbal dopamine responses, evoked by a high frequency electrical stimulation of the ventral tegmental area, were more profound in socially defeated rats in comparison with non-defeated control animals. The enhanced dopamine release was associated with the prolonged immobility time in the forced swim test. The use of the dopamine depletion protocol revealed no alteration in the reduction and recovery of the amplitude of dopamine release following social defeat stress. However, administration of dopamine D2 receptor antagonist, raclopride (2 mg/kg, i.p.), resulted in significant increase of the electrically evoked dopamine release in both groups of animals, nevertheless exhibiting less manifested effect in the defeated rats comparing to control animals. Taken together, our data demonstrated profound alterations in the dopamine transmission in the association with depressive-like behavior following a single exposure to stressful environment. These voltammetric findings pointed to a promising path for the identification of neurobiological mechanisms underlying stress-promoted behavioral abnormalities.


Asunto(s)
Dopamina , Derrota Social , Ratas , Animales , Núcleo Accumbens/fisiología , Racloprida/farmacología
5.
Front Behav Neurosci ; 15: 640651, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935662

RESUMEN

The current rodent study applied in vivo fast-scan cyclic voltammetry (FSCV), paired with a pharmacological approach, to measure the release of the catecholamines (CA) dopamine (DA) and norepinephrine (NE) in the basolateral amygdala (BLA) following locus coeruleus (LC) stimulation. The primary goal was to determine if exposure to either social (social defeat) or non-social (forced swim) stress altered LC-evoked catecholamine release dynamics in the BLA. We used idazoxan (α2 adrenergic receptor antagonist) and raclopride (D2 dopamine receptor antagonist) to confirm the presence of NE and DA, respectively, in the measured CA signal. In non-stressed rats, injection of idazoxan, but not raclopride, resulted in a significant increase in the detected CA signal, indicating the presence of NE but not DA. Following exposure to either stress paradigm, the measured CA release was significantly greater after injection of either drug, suggesting the presence of both NE and DA in the LC-induced CA signal after social or non-social stress. Furthermore, acute administration of alcohol significantly decreased the CA signal in stressed rats, while it did not have an effect in naïve animals. Together, these data reveal that, while LC stimulation primarily elicits NE release in the BLA of control animals, both social and non-social stress unmask a novel dopaminergic component of LC catecholamine signaling. Future studies will be needed to identify the specific neural mechanism(s) responsible for these plastic changes in LC-BLA catecholamine signaling and to assess the possible contribution of these changes to the maladaptive behavioral phenotypes that develop following exposure to these stressors.

6.
Neuroscience ; 443: 84-92, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32707291

RESUMEN

The relationship between stress and alcohol-drinking behaviors has been intensively explored; however, neuronal substrates and neurotransmitter dynamics responsible for a causal link between these conditions are still unclear. Here, we optogenetically manipulated locus coeruleus (LC) norepinephrine (NE) activity by applying distinct stimulation protocols in order to explore how phasic and tonic NE release dynamics control alcohol-drinking behaviors. Our results clearly demonstrate contrasting behavioral consequences of LC-NE circuitry activation during low and high frequency stimulation. Specifically, applying tonic stimulation during a standard operant drinking session resulted in increased intake, while phasic stimulation decreased this measure. Furthermore, stimulation during extinction probe trials, when the lever press response was not reinforced, did not significantly alter alcohol-seeking behavior if a tonic pattern was applied. However, phasic stimulation substantially suppressed the number of lever presses, indicating decreased alcohol seeking under the same experimental condition. Given the well-established correlative link between stress and increased alcohol consumption, here we provide the first evidence that tonic LC-NE activity plays a causal role in stress-associated increases in drinking.


Asunto(s)
Locus Coeruleus , Neuronas , Conducta de Ingestión de Líquido , Norepinefrina
7.
iScience ; 23(3): 100877, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32062422

RESUMEN

Despite many years of work on dopaminergic mechanisms of alcohol addiction, much of the evidence remains mostly correlative in nature. Fortunately, recent technological advances have provided the opportunity to explore the causal role of alterations in neurotransmission within circuits involved in addictive behaviors. Here, we address this critical gap in our knowledge by integrating an optogenetic approach and an operant alcohol self-administration paradigm to assess directly how accumbal dopamine (DA) release dynamics influences the appetitive (seeking) component of alcohol-drinking behavior. We show that appetitive reward-seeking behavior in rats trained to self-administer alcohol can be shaped causally by ventral tegmental area-nucleus accumbens (VTA-NAc) DA neurotransmission. Our findings reveal that phasic patterns of DA release within this circuit enhance a discrete measure of alcohol seeking, whereas tonic patterns of stimulation inhibit this behavior. Moreover, we provide mechanistic evidence that tonic-phasic interplay within the VTA-NAc DA circuit underlies these seemingly paradoxical effects.

8.
ACS Chem Neurosci ; 10(4): 1986-1991, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30289684

RESUMEN

Activity in the mesolimbic dopamine (DA) pathway is known to have a role in reward processing and related behaviors. The mesolimbic DA response to reward has been well-examined, while the response to aversive or negative stimuli has been studied to a lesser extent and produced inconclusive results. However, a brief increase in the DA concentration in terminals during nociceptive activation has become an established but not well-characterized phenomenon. Consequently, the interpretation of the significance of this neurochemical response is still elusive. The present study was designed to further explore these increases in subsecond DA dynamics triggered by negative stimuli using voltammetry in anesthetized rats. Our experiments revealed that repeated exposure to a tail pinch resulted in more efficacious DA release in rat nucleus accumbens. This fact may suggest a protective nature of immediate DA efflux. Furthermore, a sensitized DA response to a neutral stimulus, such as a touch, was discovered following several noxious pinches, while a touch applied before these pinches did not trigger DA release. Finally, it was found that the pinch-evoked DA efflux was significantly decreased by ethanol acutely administrated at an analgesic dose. Taken together, these results support the hypothesis that subsecond DA release in the nucleus accumbens may serve as an endogenous antinociceptive signal.


Asunto(s)
Dopamina/metabolismo , Etanol/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Estimulación Física/efectos adversos , Animales , Estimulación Física/métodos , Ratas , Ratas Sprague-Dawley , Cola (estructura animal)/efectos de los fármacos , Cola (estructura animal)/metabolismo
9.
Sci Rep ; 8(1): 332, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321525

RESUMEN

The current study aimed to explore how presynaptic dopamine (DA) function is altered following brief stress episodes and chronic ethanol self-administration and whether these neuroadaptations modify the acute effects of ethanol on DA dynamics. We used fast-scan cyclic voltammetry to evaluate changes in DA release and uptake parameters in rat nucleus accumbens brain slices by analyzing DA transients evoked through single pulse electrical stimulation. Adult male rats were divided into four groups: ethanol-naïve or ethanol drinking (six week intermittent two-bottle choice) and stressed (mild social defeat) or nonstressed. Results revealed that the mild stress significantly increased DA release and uptake in ethanol-naïve subjects, compared to nonstressed controls. Chronic ethanol self-administration increased the DA uptake rate and occluded the effects of stress on DA release dynamics. Bath-applied ethanol decreased stimulated DA efflux in a concentration-dependent manner in all groups; however, the magnitude of this effect was blunted by either stress or chronic ethanol, or by a combination of both procedures. Together, these findings suggest that stress and ethanol drinking may promote similar adaptive changes in accumbal presynaptic DA release measures and that these changes may contribute to the escalation in ethanol intake that occurs during the development of alcohol use disorder.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Estrés Psicológico , Consumo de Bebidas Alcohólicas/psicología , Animales , Biomarcadores , Masculino , Núcleo Accumbens/fisiopatología , Ratas , Autoadministración
10.
Behav Neurosci ; 130(2): 212-30, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26820587

RESUMEN

Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the third or fourth weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear-conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the third and fourth weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. (PsycINFO Database Record


Asunto(s)
Condicionamiento Clásico/fisiología , Miedo/fisiología , Sistema Límbico/fisiología , Estimulación Acústica , Amígdala del Cerebelo/fisiología , Animales , Ansiedad/fisiopatología , Aprendizaje por Asociación/fisiología , Femenino , Genes Inmediatos-Precoces , Hipocampo , Sistema Límbico/crecimiento & desarrollo , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Neuroscience ; 333: 54-64, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27421228

RESUMEN

Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.


Asunto(s)
Dopamina/metabolismo , Conducta Alimentaria/fisiología , Núcleo Accumbens/metabolismo , Optogenética , Recompensa , Área Tegmental Ventral/metabolismo , Animales , Conducta de Elección/fisiología , Conducta Consumatoria/fisiología , Sacarosa en la Dieta , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Agua Potable , Estimulación Eléctrica , Conducta Alimentaria/psicología , Masculino , Núcleo Accumbens/citología , Periodicidad , Ratas Long-Evans
12.
PLoS One ; 9(6): e100807, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24977415

RESUMEN

Anxiety disorders often emerge during childhood. Rodent models using classical fear conditioning have shown that different types of fear depend upon different neural structures and may emerge at different stages of development. For example, some work has suggested that contextual fear conditioning generally emerges later in development (postnatal day 23-24) than explicitly cued fear conditioning (postnatal day 15-17) in rats. This has been attributed to an inability of younger subjects to form a representation of the context due to an immature hippocampus. However, evidence that contextual fear can be observed in postnatal day 17 subjects and that cued fear conditioning continues to emerge past this age raises questions about the nature of this deficit. The current studies examine this question using both the context pre-exposure facilitation effect for immediate single-shock contextual fear conditioning and traditional cued fear conditioning using Sprague-Dawley rats. The data suggest that both cued and contextual fear conditioning are continuing to develop between PD 17 and 24, consistent with development occurring the in essential fear conditioning circuit.


Asunto(s)
Condicionamiento Clásico/fisiología , Miedo/psicología , Reacción Cataléptica de Congelación/fisiología , Estimulación Acústica , Factores de Edad , Animales , Animales Recién Nacidos , Señales (Psicología) , Miedo/fisiología , Femenino , Hipocampo/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA