Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 96(suppl 2): e20230742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38896600

RESUMEN

FioAntar, FIOCRUZ's research project in Antarctica, is based on the One Health approach. FioAntar aims to generate relevant information that will help reduce the risk of future pandemics and improve the search for chemical compounds and new biological molecules. After four expeditions to Antarctica under the scope of PROANTAR, Fiocruz has identified Influenza H11N2 virus in environmental fecal samples, as well as Histoplasma capsulatum and Bacillus cereus in soil samples. In addition, in a prospective virome analysis from different lakes in the South Shetland Islands, six viral orders were described, supporting future research related to the biodiversity and viral ecology in this extreme ecosystem. Our findings of environmental pathogens of public health importance are a warning about the urgency of establishing a surveillance agenda on zoonoses in Antarctica due to the imminent risks that ongoing environmental and climate changes impose on human health across the planet. FioAntar strives to establish a comprehensive surveillance program across Antarctica, monitoring circulation of pathogens with the potential to transcend continent boundaries, thereby mitigating potential spread. For Fiocruz, Antarctica signifies a new frontier, teeming with opportunities to explore novel techniques, refine established methodologies, and cultivate invaluable knowledge.


Asunto(s)
Monitoreo del Ambiente , Regiones Antárticas , Humanos , Monitoreo del Ambiente/métodos , Salud Única , Animales , Salud Pública
2.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255914

RESUMEN

Breast cancer is one of the leading causes of death among women worldwide and can be classified into four major distinct molecular subtypes based on the expression of specific receptors. Despite significant advances, the lack of biomarkers for detailed diagnosis and prognosis remains a major challenge in the field of oncology. This study aimed to identify short single-stranded oligonucleotides known as aptamers to improve breast cancer diagnosis. The Cell-SELEX technique was used to select aptamers specific to the MDA-MB-231 tumor cell line. After selection, five aptamers demonstrated specific recognition for tumor breast cell lines and no binding to non-tumor breast cells. Validation of aptamer specificity revealed recognition of primary and metastatic tumors of all subtypes. In particular, AptaB4 and AptaB5 showed greater recognition of primary tumors and metastatic tissue, respectively. Finally, a computational biology approach was used to identify potential aptamer targets, which indicated that CSKP could interact with AptaB4. These results suggest that aptamers are promising in breast cancer diagnosis and treatment due to their specificity and selectivity.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Femenino , Humanos , Animales , Neoplasias de la Mama/diagnóstico , Mama , Línea Celular Tumoral , Oligonucleótidos
3.
Curr Issues Mol Biol ; 45(8): 6538-6549, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37623231

RESUMEN

Mycobacterium bovis BCG is the only vaccine against tuberculosis. The variable forms of cultivation throughout the years, before seed-lots were developed, allowed in vitro evolution of the original strain, generating a family of vaccines with different phenotypic and genotypic characteristics. Molecular studies revealed regions of difference (RDs) in the genomes of the various BCG strains. This work aims to characterize the gene pair rv3407-rv3408 (vapB47-vapC47), coding for a toxin-antitoxin system of the VapBC family, and to evaluate possible transcriptional effects due to the adjacent BCG Moreau-specific genomic deletion RD16. We show that these genes are co-transcribed in BCG strains Moreau and Pasteur, and that the inactivation of an upstream transcriptional repressor (Rv3405c) due to RD16 has a polar effect, leading to increased vapBC47 expression. Furthermore, we detect VapB47 DNA binding in vitro, dependent on a 5' vapB47 sequence that contributes to a palindrome, spanning the promoter and coding region. Our data shed light on the regulation of VapBC systems and on the impact of the BCG Moreau RD16 deletion in the expression of adjacent genes, contributing to a better understanding of BCG Moreau physiology.

4.
Mem Inst Oswaldo Cruz ; 118: e230084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37672426

RESUMEN

BACKGROUND: Few studies have focused on microbial diversity in indoor environments of ships, as well as the role of the microbiome and its ecological interconnections. In this study, we investigated the microbiome and virome present on the internal surfaces of a polar ship in different stages (beginning, during, and at the end) of the Brazilian Antarctic expedition in order to evaluate abundance of microorganisms in different periods. OBJECTIVES AND METHODS: We used shotgun metagenomic analysis on pooled samples from sampling surfaces in the ship's interior to track the microbial diversity. FINDINGS: Considering the total fraction of the microbiome, the relative abundance of bacteria, eukaryotes, viruses, and archaea was 83.7%, 16.2%, 0.04%, and 0.002%, respectively. Proteobacteria was the most abundant bacterial phyla, followed by Firmicutes, Actinobacteria, and Bacteroidetes. Concerning the virome, the greatest richness of viral species was identified during the middle of the trip, including ten viral families after de novo assembly: Autographiviridae, Chrysoviridae, Genomoviridae, Herelleviridae, Myoviridae, Partitiviridae, Podoviridae, Potyviridae, Siphoviridae, and Virgaviridae. MAIN CONCLUSIONS: This study contributed to the knowledge of microbial diversity in naval transportation facilities, and variations in the abundance of microorganisms probably occurred due to factors such as the number of passengers and activities on the ship.


Asunto(s)
Microbiota , Viroma , Humanos , Navíos , Regiones Antárticas , Archaea/genética
5.
An Acad Bras Cienc ; 95(suppl 3): e20230741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126386

RESUMEN

Numerous Antarctic species are recognized as reservoirs for various pathogens, and their migratory behavior allows them to reach the Brazilian coast, potentially contributing to the emergence and circulation of new infectious diseases. To address the potential zoonotic risks, we conducted surveillance of influenza A virus (IAV) and coronaviruses (CoVs) in the Antarctic Peninsula, specifically focusing on different bird and mammal species in the region. During the summer of 2021/2022, as part of the Brazilian Antarctic Expedition, we collected and examined a total of 315 fecal samples to target these respiratory viruses. Although we did not detect the viruses of interest during this particular expedition, previous research conducted by our team has shown the presence of the H11N2 subtype of influenza A virus in penguin fecal samples from the same region. Given the continuous emergence of new viral strains worldwide, it is crucial to maintain active surveillance in the area, contributing to strengthening integrated One Health surveillance efforts.


Asunto(s)
Infecciones por Coronavirus , Virus de la Influenza A , Gripe Aviar , Spheniscidae , Animales , Regiones Antárticas , Espera Vigilante , Gripe Aviar/epidemiología , Filogenia , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Mamíferos
6.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047289

RESUMEN

Ovarian cancer is among the seven most common types of cancer in women, being the most fatal gynecological tumor, due to the difficulty of detection in early stages. Aptamers are important tools to improve tumor diagnosis through the recognition of specific molecules produced by tumors. Here, aptamers and their potential targets in ovarian cancer cells were analyzed by in silico approaches. Specific aptamers were selected by the Cell-SELEX method using Caov-3 and OvCar-3 cells. The five most frequent aptamers obtained from the last round of selection were computationally modeled. The potential targets for those aptamers in cells were proposed by analyzing proteomic data available for the Caov-3 and OvCar-3 cell lines. Overexpressed proteins for each cell were characterized as to their three-dimensional model, cell location, and electrostatic potential. As a result, four specific aptamers for ovarian tumors were selected: AptaC2, AptaC4, AptaO1, and AptaO2. Potential targets were identified for each aptamer through Molecular Docking, and the best complexes were AptaC2-FXYD3, AptaC4-ALPP, AptaO1-TSPAN15, and AptaO2-TSPAN15. In addition, AptaC2 and AptaO1 could detect different stages and subtypes of ovarian cancer tissue samples. The application of this technology makes it possible to propose new molecular biomarkers for the differential diagnosis of epithelial ovarian cancer.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Apoptosis , Simulación del Acoplamiento Molecular , Proteómica , Aptámeros de Nucleótidos/metabolismo , Técnica SELEX de Producción de Aptámeros/métodos , Proteínas de la Membrana , Proteínas de Neoplasias
7.
Mem Inst Oswaldo Cruz ; 117: e210395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35239842

RESUMEN

Transforming growth factor beta (TGF-ß) is deeply involved on the pathogenesis of Chagas disease. Our group has been investigating the participation of this pleiotropic cytokine in different aspects of Chagas disease over the last 20 years. Important observations have been made, such as: (i) the ability of Trypanosoma cruzi in activating latent TGF-ß; (ii) the potential involvement of TGF-ß pathway on T. cruzi invasion of host cells; (iii) association of TGF-ß with parasite intracellular replication; (iv) cardiac fibrosis development and maintenance; (v) disruption of Connexin-43 plaque structures and (vi) inflammation and immune response. In this perspective article we intend to discuss the advances of the potential use of new therapies targeting TGF-ß to treat the cardiac alterations of Chagas disease-affected patients.


Asunto(s)
Cardiomiopatía Chagásica , Trypanosoma cruzi , Cardiomiopatía Chagásica/tratamiento farmacológico , Cardiomiopatía Chagásica/metabolismo , Corazón , Humanos , Miocardio/patología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Trypanosoma cruzi/fisiología
8.
BMC Med Educ ; 18(1): 233, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305069

RESUMEN

BACKGROUND: Scientific and professional development opportunities for early career scientists in low- and middle- income countries (LMICs) are limited and not consistent. There is a disproportionately low number of biomedical and clinical researchers in LMIC's relative to their high burden of disease, a disparity that is aggravated by emigration of up to 70% of scientists from their countries of birth for education and employment elsewhere. To help address this need, a novel University-accredited, immersive fellowship program was established by a large public-academic-private network. We sought to describe the program and summarize progress and lessons learned over its first 7-years. METHODS: Hallmarks of the program are a structured learning curriculum and bespoke research activities tailored to the needs of each fellow. Research projects expose the scientists to state-of-the-art methodologies and leading experts in their fields while also ensuring that learnings are implementable within their home infrastructure. Fellows run seminars on drug discovery and development that reinforce themes of scientific leadership and teamwork together with practical modules on addressing healthcare challenges within their local systems. Industry mentors achieve mutual learning to better understand healthcare needs in traditionally underserved settings. We evaluated the impact of the program through an online survey of participants and by assessing research output. RESULTS: More than 140 scientists and clinicians from 25 countries participated over the 7-year period. Evaluation revealed strong evidence of knowledge and skills transfer, and beneficial self-reported impact on fellow's research output and career trajectories. Examples of program impact included completion of post-graduate qualifications; establishment and implementation of good laboratory- and clinical- practice mechanisms; and becoming lead investigators in local programs. There was a high retention of fellows in their home countries (> 75%) and an enduring professional network among the fellows and their mentors. CONCLUSIONS: Our experience demonstrates an example for how multi-sectoral partners can contribute to scientific and professional development of researchers in LMICs and supports the idea that capacity-building efforts should be tailored to the specific needs of beneficiaries to be maximally effective. Lessons learned may be applied to the design and conduct of other programs to strengthen science ecosystems in LMICs.


Asunto(s)
Creación de Capacidad , Investigadores/educación , Curriculum , Países en Desarrollo , Becas , Femenino , Humanos , Liderazgo , Aprendizaje , Masculino , Mentores , Investigadores/provisión & distribución
9.
Nucleic Acids Res ; 39(9): e57, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21306991

RESUMEN

Second-generation sequencing technologies have made large-scale sequencing projects commonplace. However, making use of these datasets often requires gene function to be ascribed genome wide. Although tool development has kept pace with the changes in sequence production, for tasks such as mapping, de novo assembly or visualization, genome annotation remains a challenge. We have developed a method to rapidly provide accurate annotation for new genomes using previously annotated genomes as a reference. The method, implemented in a tool called RATT (Rapid Annotation Transfer Tool), transfers annotations from a high-quality reference to a new genome on the basis of conserved synteny. We demonstrate that a Mycobacterium tuberculosis genome or a single 2.5 Mb chromosome from a malaria parasite can be annotated in less than five minutes with only modest computational resources. RATT is available at http://ratt.sourceforge.net.


Asunto(s)
Genómica/métodos , Anotación de Secuencia Molecular/métodos , Programas Informáticos , Algoritmos , Genoma Bacteriano , Genoma de Protozoos , Mycobacterium tuberculosis/genética , Plasmodium berghei/genética , Plasmodium chabaudi/genética
10.
Front Med (Lausanne) ; 10: 1215916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928473

RESUMEN

Background: In 2019, a highly pathogenic coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced and resulted in the outbreak of coronavirus disease 2019 (COVID-19). With the aim of finding effective drugs to fight against the disease, several trials have been conducted since COVID-19 can only be considered a treatable disease, from a clinical point of view, after the availability of specific and effective antivirals. AZVUDINE (FNC), initially developed for treating HIV, is a potential treatment for COVID-19 as it has the capability to lower the patient's viral load and promote recovery. Methods: Volunteers infected with SARS-CoV-2 confirmed by reverse transcription polymerase chain reaction (RT-PCR), with good kidney and liver function, who were not using other antivirals or monoclonal antibodies were eligible. Samples from patients were assessed for viral load every 48 h during treatment using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and droplet digital polymerase chain reaction (ddPCR). Results: The study's primary outcome measure was the percentage of participants showing an improvement in clinical scores, while the secondary outcome measure was the percentage of participants with a clinical outcome of cure. These measures were used to assess the safety and efficacy of FNC for treating COVID-19. In the analysis of sociodemographic variables, no significant differences were detected between patients in the FNC and the placebo group for race, age group, or sex. The results showed a potential benefit to participants who received FNC during the study, as observed in the shorter hospital stay, shorter negative conversion time of SARS-CoV-2, and a significant reduction in viral load. Furthermore, the reduction in fever and chills were significant at D1, D2, and D3. In this study, a total of 112 adverse events cases were noted, with 105 cases being categorized as non-serious and only 7 cases as serious adverse events. Conclusion: The pandemic is not being effectively controlled and is causing multiple waves of infection that require extensive medical resources. However, FNC has demonstrated potential to reduce the treatment duration of moderate COVID-19 cases, thereby saving significant medical resources. This makes FNC a promising candidate for COVID-19 treatment.Clinical trial registration: [clinicaltrials.gov], identifier [NCT04668235].

11.
Front Public Health ; 11: 1186463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790714

RESUMEN

Introduction: After three years since the beginning of the pandemic, the new coronavirus continues to raise several questions regarding its infectious process and host response. Several mutations occurred in different regions of the SARS-CoV-2 genome, such as in the spike gene, causing the emergence of variants of concern and interest (VOCs and VOIs), of which some present higher transmissibility and virulence, especially among patients with previous comorbidities. It is essential to understand its spread dynamics to prevent and control new biological threats that may occur in the future. In this population_based retrospective observational study, we generated data and used public databases to understand SARS-CoV-2 dynamics. Methods: We sequenced 1,003 SARS-CoV-2 genomes from naso-oropharyngeal swabs and saliva samples from Pará from May 2020 to October 2022. To gather epidemiological data from Brazil and the world, we used FIOCRUZ and GISAID databases. Results: Regarding our samples, 496 (49.45%) were derived from female participants and 507 (50.55%) from male participants, and the average age was 43 years old. The Gamma variant presented the highest number of cases, with 290 (28.91%) cases, followed by delta with 53 (5.28%). Moreover, we found seven (0.69%) Omicron cases and 651 (64.9%) non-VOC cases. A significant association was observed between sex and the clinical condition (female, p = 8.65e-08; male, p = 0.008961) and age (p = 3.6e-10). Discussion: Although gamma had been officially identified only in December 2020/January 2021, we identified a gamma case from Belém (capital of Pará State) dated May 2020 and three other cases in October 2020. This indicates that this variant was circulating in the North region of Brazil several months before its formal identification and that Gamma demonstrated its actual transmission capacity only at the end of 2020. Furthermore, the public data analysis showed that SARS-CoV-2 dispersion dynamics differed in Brazil as Gamma played an important role here, while most other countries reported a new infection caused by the Delta variant. The genetic and epidemiological information of this study reinforces the relevance of having a robust genomic surveillance service that allows better management of the pandemic and that provides efficient solutions to possible new disease-causing agents.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Femenino , Masculino , Adulto , SARS-CoV-2/genética , Brasil/epidemiología , COVID-19/epidemiología , Análisis de Datos
12.
Sci Total Environ ; 852: 158537, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36075413

RESUMEN

Polar freshwater ecosystems are characterized by a distinct microbiota. However, little is known about viral diversity and abundance, especially regarding the ecology of RNA viruses. We used shotgun metagenomic analysis on samples from Antarctic ecosystems, and report here the characterization of the virome fraction, from different lakes located in the South Shetland Islands (Penguin, Ardley, Deception and King George Island) in the Peninsula Antarctica, in the summer season 2020. DNA viruses (99.4 %) prevailed over RNA viruses (0.6 %) in the lake samples. Six viral orders were identified in the metagenomic libraries: Caudovirales (dsDNA), which was prevalent in most lakes; Picornavirales (ssRNA+); Sobelivirales (ssRNA+); Tolivirales (ssRNA+); Petitvirales (ssDNA) and Baphyvirales (ssDNA), including eight viral families (Herelleviridae, Siphoviridae, Myoviridae, Microviridae, Marnaviridae, Bacilladnaviridae, Barnaviridae and Tombusviridae) and several other, mainly non-classified ssRNA(+) viruses in the lakes of Ardley Island. Bacteriophages (dsDNA) (Herelleviridae family) infecting the phylum Firmicutes and Siphoviridae were predominant in most lakes evaluated. Functional analysis demonstrated a prevalence of unknown proteins (68 %) in the virome. Our prospective study provides virome analysis data from different lakes in the South Shetland Islands, Antarctica, opening exploratory lines for future research related to the biodiversity and viral ecology in this extreme ecosystem.


Asunto(s)
Microbiota , Virus ARN , Virus , Humanos , Lagos , Regiones Antárticas , Viroma , Estudios Prospectivos , Virus/genética , Islas
13.
Front Cell Infect Microbiol ; 12: 1017040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530434

RESUMEN

Chronic Chagasic cardiomyopathy (CCC), a progressive inflammatory and fibrosing disease, is the most prominent clinical form of Chagas disease, a neglected tropical disease caused by Trypanosoma cruzi infection. During CCC, the parasite remains inside the cardiac cells, leading to tissue damage, involving extensive inflammatory response and irregular fibrosis. Among the fibrogenic factors is transforming growth factor-ß (TGF-ß), a key cytokine controlling extracellular matrix synthesis and degradation. TGF-ß is involved in CCC onset and progression, with increased serum levels and activation of its signaling pathways in the cardiac tissue, which crucially contributes to fibrosis. Inhibition of the TGF-ß signaling pathway attenuates T. cruzi infection and prevents cardiac damage in an experimental model of acute Chagas disease. The aim of this study was to investigate the effect of TGF-ß neutralization on T. cruzi infection in both in vitro and in vivo pre-clinical models, using the 1D11 monoclonal antibody. To this end, primary cultures of cardiac cells were infected with T. cruzi trypomastigote forms and treated with 1D11. For in vivo studies, 1D11 was administered in different schemes for acute and chronic phase models (Swiss mice infected with 104 parasites from the Y strain and C57BL/6 mice infected with 102 parasites from the Colombian strain, respectively). Here we show that the addition of 1D11 to cardiac cells greatly reduces cardiomyocyte invasion by T. cruzi and the number of parasites per infected cell. In both acute and chronic experimental models, T. cruzi infection altered the electrical conduction, decreasing the heart rate, increasing the PR interval and the P wave duration. The treatment with 1D11 reduced cardiac fibrosis and reversed electrical abnormalities improving cardiac performance. Taken together, these data further support the major role of the TGF-ß signaling pathways in T. cruzi-infection and their biological consequences on parasite/host interactions. The therapeutic effects of the 1D11 antibody are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-ß neutralization.


Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , Trypanosoma cruzi , Ratones , Animales , Factor de Crecimiento Transformador beta/metabolismo , Cardiomiopatía Chagásica/tratamiento farmacológico , Trypanosoma cruzi/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Fibrosis
14.
J Bacteriol ; 193(19): 5600-1, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21914899

RESUMEN

Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only vaccine available against tuberculosis, and the strains used worldwide represent a family of daughter strains with distinct genotypic characteristics. Here we report the complete genome sequence of M. bovis BCG Moreau, the strain in continuous use in Brazil for vaccine production since the 1920s.


Asunto(s)
Vacuna BCG/genética , Genoma Bacteriano/genética , Mycobacterium bovis/genética , Datos de Secuencia Molecular , Tuberculosis/inmunología
15.
J Proteome Res ; 10(1): 153-60, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20806975

RESUMEN

Glioblastoma multiform (GBM) is by far the most malignant glioma. We have introduced a new treatment for GBMs that comprises the inhalation of a naturally occurring terpene with chemotherapeutic properties known as perillyl alcohol (POH). Clinical trial results on recurrent GBM patients showed that POH extends the average life by more than eight months, temporarily slows tumor growth, and in some cases even decreases tumor size. After approximately seven months, the tumor continues to grow and leads to a dismal prognosis. To investigate how these tumors become resistant to POH, we generated an A172 human glioblastoma cell culture tolerant to 0.06 mM of POH (A172r). We used Multidimensional Protein Identification Technology (MudPIT) to compare the protein expression profile of A172r cells to the established glioblastoma A172 cell line. Our results include a list of identified proteins unique to either the resistant or the nonresistant cell line. These proteins are related to cellular growth, negative apoptosis regulation, Ras pathway, and other key cellular functions that could be connected to the underlying mechanisms of resistance.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/metabolismo , Monoterpenos/farmacología , Proteoma/efectos de los fármacos , Proteómica/métodos , Western Blotting , Encéfalo/patología , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Electroforesis en Gel Bidimensional , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Imagen por Resonancia Magnética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proteoma/química , Proteoma/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Bioinformatics ; 26(5): 705-7, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20089515

RESUMEN

MOTIVATION: Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith-Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. AVAILABILITY: The database can be accessed through http://proteinworlddb.org


Asunto(s)
Bases de Datos de Proteínas , Genómica/métodos , Proteínas/química , Alineación de Secuencia/métodos , Programas Informáticos , Algoritmos , Genoma , Filogenia , Proteínas/genética
17.
BMC Microbiol ; 11: 80, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21507239

RESUMEN

BACKGROUND: Bacille Calmette-Guerin (BCG) is currently the only available vaccine against tuberculosis (TB) and comprises a heterogeneous family of sub-strains with genotypic and phenotypic differences. The World Health Organization (WHO) affirms that the characterization of BCG sub-strains, both on genomic and proteomic levels, is crucial for a better comprehension of the vaccine. In addition, these studies can contribute in the development of a more efficient vaccine against TB. Here, we combine two-dimensional electrophoresis (2DE) and mass spectrometry to analyse the proteomic profile of culture filtrate proteins (CFPs) from M. bovis BCG Moreau, the Brazilian vaccine strain, comparing it to that of BCG Pasteur. CFPs are considered of great importance given their dominant immunogenicity and role in pathogenesis, being available for interaction with host cells since early infection. RESULTS: The 2DE proteomic map of M. bovis BCG Moreau CFPs in the pH range 3-8 allowed the identification of 158 spots corresponding to 101 different proteins, identified by MS/MS. Comparison to BCG Pasteur highlights the great similarity between these BCG strains. However, quantitative analysis shows a higher expression of immunogenic proteins such as Rv1860 (BCG1896, Apa), Rv1926c (BCG1965c, Mpb63) and Rv1886c (BCG1923c, Ag85B) in BCG Moreau when compared to BCG Pasteur, while some heat shock proteins, such as Rv0440 (BCG0479, GroEL2) and Rv0350 (BCG0389, DnaK), show the opposite pattern. CONCLUSIONS: Here we report the detailed 2DE profile of CFPs from M. bovis BCG Moreau and its comparison to BCG Pasteur, identifying differences that may provide relevant information on vaccine efficacy. These findings contribute to the detailed characterization of the Brazilian vaccine strain against TB, revealing aspects that may lead to a better understanding of the factors leading to BCG's variable protective efficacy against TB.


Asunto(s)
Vacuna BCG/metabolismo , Proteínas Bacterianas/análisis , Medios de Cultivo/química , Mycobacterium bovis/crecimiento & desarrollo , Mycobacterium bovis/metabolismo , Proteoma/análisis , Brasil , Electroforesis en Gel Bidimensional , Humanos , Espectrometría de Masas
18.
BMC Genomics ; 11: 610, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21034488

RESUMEN

BACKGROUND: Trypanosoma cruzi is the etiological agent of Chagas' disease, an endemic infection that causes thousands of deaths every year in Latin America. Therapeutic options remain inefficient, demanding the search for new drugs and/or new molecular targets. Such efforts can focus on proteins that are specific to the parasite, but analogous enzymes and enzymes with a three-dimensional (3D) structure sufficiently different from the corresponding host proteins may represent equally interesting targets. In order to find these targets we used the workflows MHOLline and AnEnΠ obtaining 3D models from homologous, analogous and specific proteins of Trypanosoma cruzi versus Homo sapiens. RESULTS: We applied genome wide comparative modelling techniques to obtain 3D models for 3,286 predicted proteins of T. cruzi. In combination with comparative genome analysis to Homo sapiens, we were able to identify a subset of 397 enzyme sequences, of which 356 are homologous, 3 analogous and 38 specific to the parasite. CONCLUSIONS: In this work, we present a set of 397 enzyme models of T. cruzi that can constitute potential structure-based drug targets to be investigated for the development of new strategies to fight Chagas' disease. The strategies presented here support the concept of structural analysis in conjunction with protein functional analysis as an interesting computational methodology to detect potential targets for structure-based rational drug design. For example, 2,4-dienoyl-CoA reductase (EC 1.3.1.34) and triacylglycerol lipase (EC 3.1.1.3), classified as analogous proteins in relation to H. sapiens enzymes, were identified as new potential molecular targets.


Asunto(s)
Antiparasitarios/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Modelos Moleculares , Proteínas Protozoarias/química , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Trypanosoma cruzi/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Secuencia de Aminoácidos , Antiparasitarios/farmacología , Enfermedad de Chagas/parasitología , Bases de Datos de Proteínas , Humanos , Datos de Secuencia Molecular , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/metabolismo , Especificidad de la Especie , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología
19.
Mem Inst Oswaldo Cruz ; 105(2): 233-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20428688

RESUMEN

Chagas disease, a neglected illness, affects nearly 12-14 million people in endemic areas of Latin America. Although the occurrence of acute cases sharply has declined due to Southern Cone Initiative efforts to control vector transmission, there still remain serious challenges, including the maintenance of sustainable public policies for Chagas disease control and the urgent need for better drugs to treat chagasic patients. Since the introduction of benznidazole and nifurtimox approximately 40 years ago, many natural and synthetic compounds have been assayed against Trypanosoma cruzi, yet only a few compounds have advanced to clinical trials. This reflects, at least in part, the lack of consensus regarding appropriate in vitro and in vivo screening protocols as well as the lack of biomarkers for treating parasitaemia. The development of more effective drugs requires (i) the identification and validation of parasite targets, (ii) compounds to be screened against the targets or the whole parasite and (iii) a panel of minimum standardised procedures to advance leading compounds to clinical trials. This third aim was the topic of the workshop entitled Experimental Models in Drug Screening and Development for Chagas Disease, held in Rio de Janeiro, Brazil, on the 25th and 26th of November 2008 by the Fiocruz Program for Research and Technological Development on Chagas Disease and Drugs for Neglected Diseases Initiative. During the meeting, the minimum steps, requirements and decision gates for the determination of the efficacy of novel drugs for T. cruzi control were evaluated by interdisciplinary experts and an in vitro and in vivo flowchart was designed to serve as a general and standardised protocol for screening potential drugs for the treatment of Chagas disease.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Tripanocidas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Enfermedad Aguda , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Femenino , Masculino , Ratones , Tripanocidas/toxicidad
20.
Proteome Sci ; 7: 6, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19239707

RESUMEN

BACKGROUND: Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge. RESULTS: Here we present a new algorithm, termed GO Explorer (GOEx), that leverages the gene ontology (GO) to aid in the interpretation of proteomic data. GOEx stands out because it combines data from protein fold changes with GO over-representation statistics to help draw conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172). We used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins; GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol catabolism, the Ras pathway, apoptosis, and stress response, to name a few. CONCLUSION: GOEx facilitates organism-specific studies by leveraging GO and providing a rich graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze spectral counting data from shotgun proteomics. GOEx is available at http://pcarvalho.com/patternlab.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA