Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Hepatol ; 75(4): 935-959, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34171436

RESUMEN

Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Consenso , Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Europa (Continente) , Humanos , Hígado/efectos de los fármacos
2.
Cell Mol Life Sci ; 77(14): 2815-2838, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31583425

RESUMEN

Biological effects of high fluence low-power (HFLP) lasers have been reported for some time, yet the molecular mechanisms procuring cellular responses remain obscure. A better understanding of the effects of HFLP lasers on living cells will be instrumental for the development of new experimental and therapeutic strategies. Therefore, we investigated sub-cellular mechanisms involved in the laser interaction with human hepatic cell lines. We show that mitochondria serve as sub-cellular "sensor" and "effector" of laser light non-specific interactions with cells. We demonstrated that despite blue and red laser irradiation results in similar apoptotic death, cellular signaling and kinetic of biochemical responses are distinct. Based on our data, we concluded that blue laser irradiation inhibited cytochrome c oxidase activity in electron transport chain of mitochondria. Contrary, red laser triggered cytochrome c oxidase excessive activation. Moreover, we showed that Bcl-2 protein inhibited laser-induced toxicity by stabilizing mitochondria membrane potential. Thus, cells that either overexpress or have elevated levels of Bcl-2 are protected from laser-induced cytotoxicity. Our findings reveal the mechanism how HFLP laser irradiation interfere with cell homeostasis and underscore that such laser irradiation permits remote control of mitochondrial function in the absence of chemical or biological agents.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Transporte de Electrón/efectos de la radiación , Terapia por Luz de Baja Intensidad , Fototerapia , Apoptosis/efectos de la radiación , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Transporte de Electrón/genética , Regulación de la Expresión Génica/efectos de la radiación , Células Hep G2 , Humanos , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/efectos de la radiación , Mitocondrias/genética , Mitocondrias/efectos de la radiación , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo
3.
Bioelectromagnetics ; 42(1): 27-36, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33179821

RESUMEN

To explore cellular responses to high magnetic fields (HMF), we present a model of the interactions of cells with a homogeneous HMF that accounts for the magnetic force exerted on paramagnetic/diamagnetic species. There are various chemical species inside a living cell, many of which may have large concentration gradients. Thus, when an HMF is applied to a cell, the concentration-gradient magnetic forces act on paramagnetic or diamagnetic species and can either assist or oppose large particle movement through the cytoplasm. We demonstrate possibilities for changing the machinery in living cells with HMFs and predict two new mechanisms for modulating cellular functions with HMFs via (i) changes in the membrane potential and (ii) magnetically assisted intracellular diffusiophoresis of large proteins. By deriving a generalized form for the Nernst equation, we find that an HMF can change the membrane potential of the cell and thus have a significant impact on the properties and biological functionality of cells. The elaborated model provides a universal framework encompassing current studies on controlling cell functions by high static magnetic fields. Bioelectromagnetics. 2021;42:27-36. © 2020 Bioelectromagnetics Society.


Asunto(s)
Campos Magnéticos , Proteínas , Transporte Biológico , Potenciales de la Membrana , Transporte de Proteínas
4.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806448

RESUMEN

Lambda interferons mediate antiviral immunity by inducing interferon-stimulated genes (ISGs) in epithelial tissues. A common variant rs368234815TT/∆G creating functional gene from an IFNL4 pseudogene is associated with the expression of major ISGs in the liver but impaired clearance of hepatitis C. To explain this, we compared Halo-tagged and non-tagged IFNL3 and IFNL4 signaling in liver-derived cell lines. Transfection with non-tagged IFNL3, non-tagged IFNL4 and Halo-tagged IFNL4 led to a similar degree of JAK-STAT activation and ISG induction; however, the response to transfection with Halo-tagged IFNL3 was lower and delayed. Transfection with non-tagged IFNL3 or IFNL4 induced no transcriptome change in the cells lacking either IL10R2 or IFNLR1 receptor subunits. Cytosolic overexpression of signal peptide-lacking IFNL3 or IFNL4 in wild type cells did not interfere with JAK-STAT signaling triggered by interferons in the medium. Finally, expression profile changes induced by transfection with non-tagged IFNL3 and IFNL4 were highly similar. These data do not support the hypothesis about IFNL4-specific non-canonical signaling and point out that functional studies conducted with tagged interferons should be interpreted with caution.


Asunto(s)
Hepatocitos/inmunología , Hepatocitos/metabolismo , Interferones/genética , Interferones/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Línea Celular , Expresión Génica , Técnicas de Inactivación de Genes , Células Hep G2 , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interferones/deficiencia , Subunidad beta del Receptor de Interleucina-10/deficiencia , Subunidad beta del Receptor de Interleucina-10/genética , Subunidad beta del Receptor de Interleucina-10/metabolismo , Interleucinas/deficiencia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Interferón/deficiencia , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transfección
5.
Langmuir ; 36(29): 8485-8493, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32506911

RESUMEN

Polymer brushes not only represent emerging surface platforms for numerous bioanalytical and biological applications but also create advanced surface-tethered systems to mimic real-life biological processes. In particular, zwitterionic and nonionic polymer brushes have been intensively studied because of their extraordinary resistance to nonspecific adsorption of biomolecules (antifouling characteristics) as well as the ability to be functionalized with bioactive molecules. However, the relation between antifouling behavior in real-world biological media and structural changes of polymer brushes induced by surface preconditioning in different environments remains unexplored. In this work, we use multiple methods to study the structural properties of numerous brushes under variable ionic concentrations and determine the impact of these changes on resistance to fouling from undiluted blood plasma. We describe different mechanisms of swelling, depending on both the polymer brush coating properties and the environmental conditions that affect changes in both hydration levels and thickness. Using both fluorescent and surface plasmon resonance methods, we found that the antifouling behavior of these brushes is strongly dependent on the aforementioned structural changes. Moreover, preconditioning of the brush coatings (incubation at a variable salt concentration or drying) prior to biomolecule interaction may significantly improve the antifouling performance. These results suggest a new simple approach to improve the antifouling behavior of polymer brushes. In addition, the results herein enhance the understanding for improved design of antifouling and bioresponsive brushes employed in biosensor and biomimetic applications.

6.
Bioessays ; 40(8): e1800017, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29938810

RESUMEN

Imagine cells that live in a high-gradient magnetic field (HGMF). Through what mechanisms do the cells sense a non-uniform magnetic field and how such a field changes the cell fate? We show that magnetic forces generated by HGMFs can be comparable to intracellular forces and therefore may be capable of altering the functionality of an individual cell and tissues in unprecedented ways. We identify the cellular effectors of such fields and propose novel routes in cell biology predicting new biological effects such as magnetic control of cell-to-cell communication and vesicle transport, magnetic control of intracellular ROS levels, magnetically induced differentiation of stem cells, magnetically assisted cell division, or prevention of cells from dividing. On the basis of experimental facts and theoretical modeling we reveal timescales of cellular responses to high-gradient magnetic fields and suggest an explicit dependence of the cell response time on the magnitude of the magnetic field gradient.


Asunto(s)
Muerte Celular/fisiología , Citoesqueleto/fisiología , Campos Magnéticos , Neoplasias/patología , Animales , Evolución Biológica , Diferenciación Celular , Regulación de la Expresión Génica , Humanos , Campos Magnéticos/efectos adversos , Magnetismo/métodos , Potenciales de la Membrana , Células Madre , Factores de Tiempo
7.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872159

RESUMEN

The emerged field of non-thermal plasma (NTP) shows great potential in the alteration of cell redox status, which can be utilized as a promising therapeutic implication. In recent years, the NTP field considerably progresses in the modulation of immune cell function leading to promising in vivo results. In fact, understanding the underlying cellular mechanisms triggered by NTP remains incomplete. In order to boost the field closer to real-life clinical applications, there is a need for a critical overview of the current state-of-the-art. In this review, we conduct a critical analysis of the NTP-triggered modulation of immune cells. Importantly, we analyze pitfalls in the field and identify persisting challenges. We show that the identification of misconceptions opens a door to the development of a research strategy to overcome these limitations. Finally, we propose the idea that solving problems highlighted in this review will accelerate the clinical translation of NTP-based treatments.


Asunto(s)
Inmunidad Celular/efectos de los fármacos , Gases em Plasma/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos
8.
Cell Physiol Biochem ; 52(1): 119-140, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30790509

RESUMEN

BACKGROUND/AIMS: Alteration of cancer cell redox status has been recognized as a promising therapeutic implication. In recent years, the emerged field of non-thermal plasma (NTP) has shown considerable promise in various biomedical applications, including cancer therapy. However, understanding the molecular mechanisms procuring cellular responses remains incomplete. Thus, the aim of this study was a rigorous biochemical analysis of interactions between NTP and liver cancer cells. METHODS: The concept was validated using three different cell lines. We provide several distinct lines of evidence to support our findings; we use various methods (epifluorescent and confocal microscopy, clonogenic and cytotoxicity assays, Western blotting, pharmacological inhibition studies, etc.). RESULTS: We assessed the influence of NTP on three human liver cancer cell lines (Huh7, Alexander and HepG2). NTP treatment resulted in higher anti-proliferative effect against Alexander and Huh7 relative to HepG2. Our data clearly showed that the NTP-mediated alternation of mitochondrial membrane potential and dynamics led to ROS-mediated apoptosis in Huh7 and Alexander cells. Interestingly, plasma treatment resulted in p53 down-regulation in Huh7 cells. High levels of Bcl-2 protein expression in HepG2 resulted in their resistance in response to oxidative stress- mediated by plasma. CONCLUSION: We show thoroughly time- and dose-dependent kinetics of ROS accumulation in HCC cells. Furthermore, we show nuclear compartmentalization of the superoxide anion triggered by NTP. NTP induced apoptotic death in Huh7 liver cancer cells via simultaneous downregulation of mutated p53, pSTAT1 and STAT1. Contrary, hydrogen peroxide treatment results in autophagic cell death. We disclosed detailed mechanisms of NTP-mediated alteration of redox signalling in liver cancer cells.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/biosíntesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Muerte Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Oxidación-Reducción/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
9.
Nanotechnology ; 30(36): 365001, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31151131

RESUMEN

Controllable access to the hybrid plasmonic nanostructures built of small metal nanoparticles and organic spacer offers a tempting set of electronic excitations, which proper handling promises valuable applications and bright fundamental prospect. Here, we report on remarkable plasmonic properties of the Au x C60 hybrid nanostructures formed through self-assembling the depositing mixture of metal and fullerene. Using optical absorption spectra, we demonstrate establishing of quantum plasmon (QP) excitations upon the controllable increase of spatial density and size of the Au clusters formed in the films. Detection of two plasmonic modes evidences the QP hybridization enabling by nm-scaled proximity of the neighboured Au clusters. Variation of the QP mode parameters with gradual decrease of the inter-cluster spacing ΔL to the sub-nanometre scale driven by the Au concentration in the film x allowed us to evidence the quantum tunnelling regime in the QP hybridization launching at ΔL ≈ 0.9 nm. The later result designates an important role of the C60 molecules, separating the Au clusters, in design of plasmonic and transport properties of the hybrid films. The obtained results represent the self-assembled Au x C60 nanocomposites as the promising plasmonic materials with potential for application in nanoplasmonics, nanoelectronics, and nanomedicine.

10.
Nanotechnology ; 29(13): 135701, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29368694

RESUMEN

Driving by interplay between plasmonic and magnetic effects in organic composite semiconductors is a challenging task with a huge potential for practical applications. Here, we present evidence of a quantum plasmon excited in the self-assembled Co x C60 nanocomposite films with x > 15 (interval of the Co cluster coalescence) and analyse it using the optical absorption (OA) spectra. In the case of Co x C60 film with x = 16 (LF sample), the quantum plasmon generated by the Co/CoO clusters is found as the 1.5 eV-centred OA peak. This finding is supported by the establishment of four specific C60-related OA lines detected at the photon energies E p  > 2.5 eV. Increase of the Co content up to x = 29 (HF sample) leads to pronounced enhancement of OA intensity in the energy range of E p  > 2.5 eV and to plasmonic peak downshift of 0.2 eV with respect to the peak position in the LF spectrum. Four pairs of the OA peaks evaluated in the HF spectrum at E p  > 2.5 eV reflect splitting of the C60-related lines, suggesting great change in the microscopic conditions with increasing x. Analysis of the film nanostructure and the plasmon-induced conditions allows us to propose a Rashba-like spin splitting effect that suggests valuable sources for spin polarization.

11.
Sci Technol Adv Mater ; 16(2): 026002, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27877779

RESUMEN

Perovskite-type ferroelectric (FE) crystals are wide bandgap materials with technologically valuable optical and photoelectric properties. Here, versatile engineering of electronic transitions is demonstrated in FE nanofilms of KTaO3, KNbO3 (KNO), and NaNbO3 (NNO) with a thickness of 10-30 unit cells. Control of the bandgap is achieved using heteroepitaxial growth of new structural phases on SrTiO3 (001) substrates. Compared to bulk crystals, anomalous bandgap narrowing is obtained in the FE state of KNO and NNO films. This effect opposes polarization-induced bandgap widening, which is typically found for FE materials. Transmission electron microscopy and spectroscopic ellipsometry measurements indicate that the formation of higher-symmetry structural phases of KNO and NNO produces the desirable red shift of the absorption spectrum towards visible light, while simultaneously stabilizing robust FE order. Tuning of optical properties in FE films is of interest for nanoscale photonic and optoelectronic devices.

13.
Discov Nano ; 19(1): 106, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907808

RESUMEN

In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.

14.
Biomater Biosyst ; 14: 100093, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38585282

RESUMEN

Recently, it has been recognized that physical abnormalities (e.g. elevated solid stress, elevated interstitial fluid pressure, increased stiffness) are associated with tumor progression and development. Additionally, these mechanical forces originating from tumor cell environment through mechanotransduction pathways can affect metabolism. On the other hand, mitochondria are well-known as bioenergetic, biosynthetic, and signaling organelles crucial for sensing stress and facilitating cellular adaptation to the environment and physical stimuli. Disruptions in mitochondrial dynamics and function have been found to play a role in the initiation and advancement of cancer. Consequently, it is logical to hypothesize that mitochondria dynamics subjected to physical cues may play a pivotal role in mediating tumorigenesis. Recently mitochondrial biogenesis and turnover, fission and fusion dynamics was linked to mechanotransduction in cancer. However, how cancer cell mechanics and mitochondria functions are connected, still remain poorly understood. Here, we discuss recent studies that link mechanical stimuli exerted by the tumor cell environment and mitochondria dynamics and functions. This interplay between mechanics and mitochondria functions may shed light on how mitochondria regulate tumorigenesis.

15.
Nanoscale Adv ; 5(16): 4250-4268, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37560414

RESUMEN

Iron oxide nanoparticles (IONPs) are being actively researched in various biomedical applications, particularly as magnetic resonance imaging (MRI) contrast agents for diagnosing various liver pathologies like nonalcoholic fatty liver diseases, nonalcoholic steatohepatitis, and cirrhosis. Emerging evidence suggests that IONPs may exacerbate hepatic steatosis and liver injury in susceptible livers such as those with nonalcoholic fatty liver disease. However, our understanding of how IONPs may affect steatotic cells at the sub-cellular level is still fragmented. Generally, there is a lack of studies identifying the molecular mechanisms of potential toxic and/or adverse effects of IONPs on "non-heathy" in vitro models. In this study, we demonstrate that IONPs, at a dose that does not cause general toxicity in hepatic cells (Alexander and HepG2), induce significant toxicity in steatotic cells (cells loaded with non-toxic doses of palmitic acid). Mechanistically, co-treatment with PA and IONPs resulted in endoplasmic reticulum (ER) stress, accompanied by the release of cathepsin B from lysosomes to the cytosol. The release of cathepsin B, along with ER stress, led to the activation of apoptotic cell death. Our results suggest that it is necessary to consider the interaction between IONPs and the liver, especially in susceptible livers. This study provides important basic knowledge for the future optimization of IONPs as MRI contrast agents for various biomedical applications.

16.
Adv Drug Deliv Rev ; 197: 114828, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075952

RESUMEN

Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.


Asunto(s)
Nanomedicina , Nanopartículas , Humanos , Nanomedicina/métodos , Nanotecnología/métodos , Nanopartículas/toxicidad , Nanopartículas/química , Lisosomas
17.
ACS Biomater Sci Eng ; 9(5): 2408-2425, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37001010

RESUMEN

It has become evident that physical stimuli of the cellular microenvironment transmit mechanical cues regulating key cellular functions, such as proliferation, migration, and malignant transformation. Accumulating evidence suggests that tumor cells face variable mechanical stimuli that may induce metabolic rewiring of tumor cells. However, the knowledge of how tumor cells adapt metabolism to external mechanical cues is still limited. We therefore designed soft 3D collagen scaffolds mimicking a pathological mechanical environment to decipher how liver tumor cells would adapt their metabolic activity to physical stimuli of the cellular microenvironment. Here, we report that the soft 3D microenvironment upregulates the glycolysis of HepG2 and Alexander cells. Both cell lines adapt their mitochondrial activity and function under growth in the soft 3D microenvironment. Cells grown in the soft 3D microenvironment exhibit marked mitochondrial depolarization, downregulation of mitochondrially encoded cytochrome c oxidase I, and slow proliferation rate in comparison with stiff monolayer cultures. Our data reveal the coupling of liver tumor glycolysis to mechanical cues. It is proposed here that soft 3D collagen scaffolds can serve as a useful model for future studies of mechanically regulated cellular functions of various liver (potentially other tissues as well) tumor cells.


Asunto(s)
Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Dinámicas Mitocondriales , Colágeno
18.
Sci Rep ; 13(1): 10818, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402779

RESUMEN

Dramatically increased levels of electromagnetic radiation in the environment have raised concerns over the potential health hazards of electromagnetic fields. Various biological effects of magnetic fields have been proposed. Despite decades of intensive research, the molecular mechanisms procuring cellular responses remain largely unknown. The current literature is conflicting with regards to evidence that magnetic fields affect functionality directly at the cellular level. Therefore, a search for potential direct cellular effects of magnetic fields represents a cornerstone that may propose an explanation for potential health hazards associated with magnetic fields. It has been proposed that autofluorescence of HeLa cells is magnetic field sensitive, relying on single-cell imaging kinetic measurements. Here, we investigate the magnetic field sensitivity of an endogenous autofluorescence in HeLa cells. Under the experimental conditions used, magnetic field sensitivity of an endogenous autofluorescence was not observed in HeLa cells. We present a number of arguments indicating why this is the case in the analysis of magnetic field effects based on the imaging of cellular autofluorescence decay. Our work indicates that new methods are required to elucidate the effects of magnetic fields at the cellular level.


Asunto(s)
Campos Electromagnéticos , Campos Magnéticos , Humanos , Células HeLa
19.
J Travel Med ; 30(5)2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37133444

RESUMEN

BACKGROUND: Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway. METHODS: A fast acoustic biosensor with an antifouling nano-coating was introduced to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on exposed surfaces in the Prague Public Transport System. Samples were measured directly without pre-treatment. Results with the sensor gave excellent agreement with parallel quantitative reverse-transcription polymerase chain reaction (qRT-PCR) measurements on 482 surface samples taken from actively used trams, buses, metro trains and platforms between 7 and 9 April 2021, in the middle of the lineage Alpha SARS-CoV-2 epidemic wave when 1 in 240 people were COVID-19 positive in Prague. RESULTS: Only ten of the 482 surface swabs produced positive results and none of them contained virus particles capable of replication, indicating that positive samples contained inactive virus particles and/or fragments. Measurements of the rate of decay of SARS-CoV-2 on frequently touched surface materials showed that the virus did not remain viable longer than 1-4 h. The rate of inactivation was the fastest on rubber handrails in metro escalators and the slowest on hard-plastic seats, window glasses and stainless-steel grab rails. As a result of this study, Prague Public Transport Systems revised their cleaning protocols and the lengths of parking times during the pandemic. CONCLUSIONS: Our findings suggest that surface transmission played no or negligible role in spreading SARS-CoV-2 in Prague. The results also demonstrate the potential of the new biosensor to serve as a complementary screening tool in epidemic monitoring and prognosis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Aerosoles y Gotitas Respiratorias , Transportes , Pandemias/prevención & control
20.
Exp Mol Med ; 55(9): 2005-2024, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653039

RESUMEN

The lack of physiological parity between 2D cell culture and in vivo culture has led to the development of more organotypic models, such as organoids. Organoid models have been developed for a number of tissues, including the liver. Current organoid protocols are characterized by a reliance on extracellular matrices (ECMs), patterning in 2D culture, costly growth factors and a lack of cellular diversity, structure, and organization. Current hepatic organoid models are generally simplistic and composed of hepatocytes or cholangiocytes, rendering them less physiologically relevant compared to native tissue. We have developed an approach that does not require 2D patterning, is ECM independent, and employs small molecules to mimic embryonic liver development that produces large quantities of liver-like organoids. Using single-cell RNA sequencing and immunofluorescence, we demonstrate a liver-like cellular repertoire, a higher order cellular complexity, presenting with vascular luminal structures, and a population of resident macrophages: Kupffer cells. The organoids exhibit key liver functions, including drug metabolism, serum protein production, urea synthesis and coagulation factor production, with preserved post-translational modifications such as N-glycosylation and functionality. The organoids can be transplanted and maintained long term in mice producing human albumin. The organoids exhibit a complex cellular repertoire reflective of the organ and have de novo vascularization and liver-like function. These characteristics are a prerequisite for many applications from cellular therapy, tissue engineering, drug toxicity assessment, and disease modeling to basic developmental biology.


Asunto(s)
Hígado , Organoides , Humanos , Animales , Ratones , Ingeniería de Tejidos , Hepatocitos , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA