Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dis Aquat Organ ; 138: 89-96, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32103823

RESUMEN

The Baltic tellin Limecola balthica is one of the most common bivalves in intertidal areas in the Northern Hemisphere. Over the last 2 decades, the species has been suffering from a decrease in adult survival in the European Wadden Sea. While several factors such as global warming and fisheries have been suggested to influence the population dynamics of this bivalve mollusc, the potential role of diseases has never been investigated. In this study, we investigated whether disseminated neoplasia, a common proliferative disorder in bivalve molluscs, could play a potential role in the recent population decline of Baltic tellins in the Wadden Sea. We conducted a field survey in the Dutch Wadden Sea to (1) determine whether the disease occurs in Baltic tellins in the Wadden Sea and (2) quantify the occurrence and severity of the disease via histology. Disseminated neoplasia occurred in L. balthica at each of the 10 sampled locations with very high prevalences (21-89%) compared to those reported elsewhere for this species. The highest severity category was found in 8 to 87% of affected individuals, with severity generally increasing with prevalence. Disseminated neoplasia usually increases mortality among affected individuals and may also be associated with important sub-lethal effects, especially regarding gametogenesis. Thus, we suggest that disseminated neoplasia may play a key role in the population dynamics of the Baltic tellin, the extent of which remains to be investigated in future studies.


Asunto(s)
Bivalvos , Animales , Dinámica Poblacional , Prevalencia
2.
RNA ; 23(8): 1188-1199, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28500251

RESUMEN

There is mounting evidence that the ribosome is not a static translation machinery, but a cell-specific, adaptive system. Ribosomal variations have mostly been studied at the protein level, even though the essential transcriptional functions are primarily performed by rRNAs. At the RNA level, oocyte-specific 5S rRNAs are long known for Xenopus. Recently, we described for zebrafish a similar system in which the sole maternal-type 5S rRNA present in eggs is replaced completely during embryonic development by a somatic-type. Here, we report the discovery of an analogous system for the 45S rDNA elements: 5.8S, 18S, and 28S. The maternal-type 5.8S, 18S, and 28S rRNA sequences differ substantially from those of the somatic-type, plus the maternal-type rRNAs are also replaced by the somatic-type rRNAs during embryogenesis. We discuss the structural and functional implications of the observed sequence differences with respect to the translational functions of the 5.8S, 18S, and 28S rRNA elements. Finally, in silico evidence suggests that expansion segments (ES) in 18S rRNA, previously implicated in ribosome-mRNA interaction, may have a preference for interacting with specific mRNA genes. Taken together, our findings indicate that two distinct types of ribosomes exist in zebrafish during development, each likely conducting the translation machinery in a unique way.


Asunto(s)
Embrión no Mamífero/metabolismo , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/metabolismo , ARN Ribosómico 5.8S/metabolismo , Ribosomas/metabolismo , Pez Cebra/metabolismo , Animales , Emparejamiento Base , Secuencia de Bases , ADN Ribosómico/genética , Embrión no Mamífero/citología , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , ARN Ribosómico 5.8S/genética , Alineación de Secuencia , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
3.
RNA ; 23(4): 446-456, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28003516

RESUMEN

5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci.


Asunto(s)
Herencia Materna , ARN Ribosómico 5S/genética , Retroelementos , Pez Cebra/genética , Animales , Mapeo Cromosómico , Cromosomas/química , Embrión no Mamífero , Desarrollo Embrionario/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Oogénesis/genética , ARN Ribosómico 5S/clasificación , ARN Ribosómico 5S/metabolismo , Secuencias Repetidas Terminales , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(15): 4122-7, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26951689

RESUMEN

Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype.


Asunto(s)
ADN de Cadena Simple , Escherichia coli/genética , Animales , Disparidad de Par Base , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación de la Incompatibilidad de ADN , Reparación del ADN , Oligonucleótidos/genética
5.
Genome ; 61(5): 371-378, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29425468

RESUMEN

rRNAs are non-coding RNAs present in all prokaryotes and eukaryotes. In eukaryotes there are four rRNAs: 18S, 5.8S, 28S, originating from a common precursor (45S), and 5S. We have recently discovered the existence of two distinct developmental types of rRNA: a maternal-type, present in eggs and a somatic-type, expressed in adult tissues. Lately, next-generation sequencing has allowed the discovery of new small-RNAs deriving from longer non-coding RNAs, including small-RNAs from rRNAs (srRNAs). Here, we systemically investigated srRNAs of maternal- or somatic-type 18S, 5.8S, 28S, with small-RNAseq from many zebrafish developmental stages. We identified new srRNAs for each rRNA. For 5.8S, we found srRNA consisting of the 5' or 3' halves, with only the latter having different sequence for the maternal- and somatic-types. For 18S, we discovered 21 nt srRNA from the 5' end of the 18S rRNA with a striking resemblance to microRNAs; as it is likely processed from a stem-loop precursor and present in human and mouse Argonaute-complexed small-RNA. For 28S, an abundant 80 nt srRNA from the 3' end of the 28S rRNA was found. The expression levels during embryogenesis of these srRNA indicate they are not generated from rRNA degradation and might have a role in the zebrafish development.


Asunto(s)
Proteínas Argonautas/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , ARN Ribosómico 5.8S/genética , ARN Pequeño no Traducido/genética , Pez Cebra/genética , Animales , Proteínas Argonautas/metabolismo , Secuencia de Bases , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Conformación de Ácido Nucleico , Unión Proteica , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/metabolismo , ARN Ribosómico 5.8S/metabolismo , ARN Pequeño no Traducido/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
6.
Nucleic Acids Res ; 43(14): e89, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25870415

RESUMEN

There is an increasing interest in complementing RNA-seq experiments with small-RNA (sRNA) expression data to obtain a comprehensive view of a transcriptome. Currently, two main experimental challenges concerning sRNA-seq exist: how to check the size distribution of isolated sRNAs, given the sensitive size-selection steps in the protocol; and how to normalize data between samples, given the low complexity of sRNA types. We here present two separate sets of synthetic RNA spike-ins for monitoring size-selection and for performing data normalization in sRNA-seq. The size-range quality control (SRQC) spike-in set, consisting of 11 oligoribonucleotides (10-70 nucleotides), was tested by intentionally altering the size-selection protocol and verified via several comparative experiments. We demonstrate that the SRQC set is useful to reproducibly track down biases in the size-selection in sRNA-seq. The external reference for data-normalization (ERDN) spike-in set, consisting of 19 oligoribonucleotides, was developed for sample-to-sample normalization in differential-expression analysis of sRNA-seq data. Testing and applying the ERDN set showed that it can reproducibly detect differential expression over a dynamic range of 2(18). Hence, biological variation in sRNA composition and content between samples is preserved while technical variation is effectively minimized. Together, both spike-in sets can significantly improve the technical reproducibility of sRNA-seq.


Asunto(s)
Perfilación de la Expresión Génica/normas , ARN Pequeño no Traducido/metabolismo , Análisis de Secuencia de ARN/normas , Animales , Control de Calidad , ARN Pequeño no Traducido/química , Estándares de Referencia , Pez Cebra/genética
7.
J Med Genet ; 51(4): 245-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24501230

RESUMEN

BACKGROUND: Lynch syndrome, an autosomal-dominant disorder characterised by high colorectal and endometrial cancer risks, is caused by inherited mutations in DNA mismatch repair (MMR) genes. Mutations fully abrogating gene function are unambiguously disease causing. However, missense mutations often have unknown functional implications, hampering genetic counselling. We have applied a novel approach to study three MSH2 unclassified variants (UVs) found in Dutch families with suspected Lynch syndrome. METHODS: The three mutations were recreated in the endogenous Msh2 gene in mouse embryonic stem cells by oligonucleotide-directed gene modification. The effect of the UVs on MMR activity was then tested using a set of functional assays interrogating the main MMR functions. RESULTS: We recreated and functionally tested three MSH2 UVs: MSH2-Y165D (c.493T>G), MSH2-Q690E (c.2068C>G) and MSH2-M813V (c.2437A>G). We observed reduced levels of MSH2-Y165D and MSH2-Q690E but not MSH2-M813V proteins. MSH2-M813V was able to support all MMR functions similar to wild-type MSH2, whereas MSH2-Y165D and MSH2-Q690E showed partial defects. CONCLUSIONS: Based on the results from our functional assays, we conclude that the MSH2-M813V variant is not disease causing. The MSH2-Y165D and MSH2-Q690E variants affect MMR function and are therefore likely the underlying cause of familial cancer predisposition. Since the MMR defect is partial, these variants may represent low penetrance alleles.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN/genética , Proteína 2 Homóloga a MutS/genética , Mutación/genética , Adulto , Anciano , Anciano de 80 o más Años , Sustitución de Aminoácidos/genética , Animales , Secuencia de Bases , Línea Celular , Codón/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Simulación por Computador , Análisis Mutacional de ADN , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje
8.
Microbiol Resour Announc ; 12(3): e0121922, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36840552

RESUMEN

Here, we report the genome sequence of a new circular viroid-like RNA (CarSV-1) derived from Dianthus caryophyllus (carnation) leaves. The CarSV-1 genome has notable sequence similarity (62%) to the well-studied CarSV viroid-like RNA and comprises the complete hammerhead consensus sequences involved in self-cleavage. CarSV-1 co-occurs with carnation viruses, such as CarMV.

9.
Microbiol Resour Announc ; 12(9): e0018923, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37555657

RESUMEN

Here, we report the genome sequences of 10 Carnation mottle virus variants. Six variants originated from a single proprietary carnation cultivar, and four were derived from four different proprietary cultivars. All variants showed nucleotide differences, but the last four did not show any variation at the amino acid level.

10.
Sci Rep ; 13(1): 8851, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258559

RESUMEN

Nebulization of mRNA therapeutics can be used to directly target the respiratory tract. A promising prospect is that mucosal administration of lipid nanoparticle (LNP)-based mRNA vaccines may lead to a more efficient protection against respiratory viruses. However, the nebulization process can rupture the LNP vehicles and degrade the mRNA molecules inside. Here we present a novel nebulization method able to preserve substantially the integrity of vaccines, as tested with two SARS-CoV-2 mRNA vaccines. We compare the new method with well-known nebulization methods used for medical respiratory applications. We find that a lower energy level in generating LNP droplets using the new nebulization method helps safeguard the integrity of the LNP and vaccine. By comparing nebulization techniques with different energy dissipation levels we find that LNPs and mRNAs can be kept largely intact if the energy dissipation remains below a threshold value, for LNP integrity 5-10 J/g and for mRNA integrity 10-20 J/g for both vaccines.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2/genética , COVID-19/prevención & control , ARN Mensajero/genética , Vacunas de ARNm
11.
Hum Mutat ; 32(4): 389-96, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21309037

RESUMEN

Mutations in the mismatch repair gene MSH2 underlie hereditary nonpolyposis colorectal cancer (Lynch syndrome). Whereas disruptive mutations are overtly pathogenic, the implications of missense mutations found in sporadic colorectal cancer patients or in suspected Lynch syndrome families are often unknown. Adequate genetic counseling of mutation carriers requires phenotypic characterization of the variant allele. We present a novel approach to functionally characterize MSH2 missense mutations. Our approach involves introduction of the mutation into the endogenous gene of murine embryonic stem cells (ESC) by oligonucleotide-directed gene modification, a technique we recently developed in our lab. Subsequently, the mismatch repair capacity of mutant ESC is determined using a set of validated functional assays. We have evaluated four clinically relevant MSH2 variants and found one to completely lack mismatch repair capacity while three behaved as wild-type MSH2 and can therefore be considered as polymorphisms. Our approach contributes to an adequate risk assessment of mismatch repair missense mutations. We have also shown that oligonucleotide-directed gene modification provides a straightforward approach to recreate allelic variants in the endogenous gene in murine ESC. This approach can be extended to other hereditary conditions.


Asunto(s)
Células Madre Embrionarias/metabolismo , Variación Genética , Proteína 2 Homóloga a MutS/genética , Alelos , Animales , Células Madre Embrionarias/citología , Humanos , Ratones , Inestabilidad de Microsatélites
12.
Sci Total Environ ; 717: 137094, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32062259

RESUMEN

Marine biogenic materials such as corals, shells, or seaweed have long been recognized as recorders of environmental conditions. Here, the bivalve Cerastoderma edule is used for the first time as a recorder of past seawater contamination with anthropogenic uranium, specifically 236U. Several studies have employed the authorized radioactive releases, including 236U, from nuclear reprocessing plants in La Hague, France, into the English Channel, and Sellafield, England, into the Irish Sea, to trace Atlantic waters and to understand recent climate induced circulation changes in the Arctic Ocean. Anthropogenic 236U has emerged over recent years as a new transient tracer to track these changes, but its application has been challenged owing to paucity of fundamental data on the input (timing and amount) of 236U from Sellafield. Here, we present 236U/238U data from bivalve shells collected close to La Hague and Sellafield from two unique shell collections that allow the reconstruction of the historical 236U contamination of seawater since the 1960s, mostly with bi-annual resolution. The novel archive is first validated by comparison with well-documented 236U discharges from La Hague. Then, shells from the Irish Sea are used to reconstruct the regional 236U contamination. Apart from defining new, observationally based 236U input functions that will allow more precise tracer studies in the Arctic Ocean, we find an unexpected peak of 236U releases to the Irish Sea in the 1970s. Using this peak, we provide evidence for a small, but significant recirculation of Irish Sea water into the English Channel. Tracing the 1970s peak should allow extending 236U tracer studies into the South Atlantic Ocean.


Asunto(s)
Plantas de Energía Nuclear , Agua de Mar , Uranio , Contaminantes Radiactivos del Agua
13.
Sci Total Environ ; 738: 139700, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32534284

RESUMEN

Radiocarbon (14C) is broadly used in oceanography to determine water ages, trace water circulation, and develop sediment- and sclerochronologies. These applications require an accurate knowledge of marine 14C levels, which have been largely perturbed by human activities. Globally during the last century the above-ground nuclear weapon testings have been the primary cause of the increased atmospheric and marine 14C. However, other anthropogenic sources may have caused important regional deviations from the bomb pulse. For the last 70 years European nuclear fuel reprocessing plants have been major contributors of 14C to air and oceans, yet, their regional impact on surrounding marine 14C has been largely overlooked. Here we use a collection of bivalve shells of known capture date and age collected from various locations, including the North Sea, the Irish Sea, Norway, and the Bay of Biscay to reconstruct the sea surface 14C over the last five decades. The measured 14C values for the period 1969-2019, reported in fraction modern, ranged from 1.1 to 1.6 in coastal waters of the Netherlands and from 1.2 to 3.2 along the coast of the UK, indicating significantly higher levels of 14C than those expected for the marine bomb pulse (0.950-1.150). The 14C peaks revealed by the shells coincide with the increase of liquid 14C releases reported from the reprocessing plants of La Hague into the English Channel, and from Sellafield into the Irish Sea. Conversely, the shells from Norway and Spain showed 14C values close to the range of the global marine bomb pulse. The observed large spatial and temporal differences in sea surface 14C show that 14C dating and tracing studies could become problematic in the English Channel, Irish Sea and North Sea for the time period covering the discharge of liquid 14C from the reprocessing plants.

14.
Methods Mol Biol ; 530: 79-99, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19266328

RESUMEN

Oligonucleotide-mediated gene targeting is an attractive alternative to current procedures to subtly modify the genome of mouse embryonic stem (ES) cells. However, oligonucleotide-directed substitution, insertion or deletion of a single or a few nucleotides was hampered by DNA mismatch repair (MMR). We have developed strategies to circumvent this problem based on findings that the central MMR protein MSH2 acts in two different mismatch recognition complexes: MSH2/MSH6, which mainly recognizes base substitutions; and MSH2/MSH3, which has more affinity for larger loops. We found that oligonucleotide-mediated base substitution could effectively be obtained upon transient suppression of MSH2 protein level, while base insertions were effective in ES cells deficient for MSH3. This method allows substitution of any codon of interest in the genome.


Asunto(s)
ADN de Cadena Simple/genética , Células Madre Embrionarias/fisiología , Marcación de Gen/métodos , Oligonucleótidos/genética , Proteínas/fisiología , Animales , Secuencia de Bases , Reparación de la Incompatibilidad de ADN , Ratones , Datos de Secuencia Molecular , Proteína 3 Homóloga de MutS , Homología de Secuencia de Ácido Nucleico
16.
Nat Commun ; 9(1): 4263, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30323300

RESUMEN

Under climate warming, migratory birds should align reproduction dates with advancing plant and arthropod phenology. To arrive on the breeding grounds earlier, migrants may speed up spring migration by curtailing the time spent en route, possibly at the cost of decreased survival rates. Based on a decades-long series of observations along an entire flyway, we show that when refuelling time is limited, variation in food abundance in the spring staging area affects fitness. Bar-tailed godwits migrating from West Africa to the Siberian Arctic reduce refuelling time at their European staging site and thus maintain a close match between breeding and tundra phenology. Annual survival probability decreases with shorter refuelling times, but correlates positively with refuelling rate, which in turn is correlated with food abundance in the staging area. This chain of effects implies that conditions in the temperate zone determine the ability of godwits to cope with climate-related changes in the Arctic.


Asunto(s)
Migración Animal/fisiología , Charadriiformes/fisiología , Cambio Climático , Animales , Regiones Árticas , Cruzamiento , Probabilidad , Estaciones del Año , Análisis de Supervivencia
17.
Nat Commun ; 9(1): 5189, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504902

RESUMEN

In the original HTML version of this Article, the order of authors within the author list was incorrect. The consortium VRS Castricum was incorrectly listed after Theunis Piersma and should have been listed after Cornelis J. Camphuysen. This error has been corrected in the HTML version of the Article; the PDF version was correct at the time of publication.

18.
Cardiovasc Res ; 72(2): 231-40, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16945356

RESUMEN

OBJECTIVE: The transcription factor KLF2 is considered an important mediator of the anti-inflammatory and anti-thrombotic properties of the endothelium. KLF2 is absent from low-shear, atherosclerosis-prone sites of the vascular tree but is induced by HMG-CoA reductase inhibitors (statins) in vitro. We studied KLF2-dependent induction of important determinants of the atheroprotective status of the endothelium to determine whether pharmacological intervention, e.g. by statins, can potentially replace shear stress. METHODS: Shear stress and statin effects in combination with TNF-alpha were determined in human umbilical vein endothelial cells by quantitative measurements of the steady-state levels and stability of mRNA for KLF2 and its downstream target genes thrombomodulin (TM) and endothelial nitric oxide synthase (eNOS). RESULTS: We demonstrate that prolonged shear stress has a potential that is superior to that of statins to induce the KLF2-dependent expression of eNOS and TM, especially in the presence of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). These effects can be attributed to the sustained stabilization of KLF2 mRNA by shear, leading to an increased KLF2 protein expression and concomitant strong induction of KLF2 downstream targets. The stabilization of KLF2 mRNA is demonstrated to be dependent on signaling involving phosphoinositide 3-kinase (PI3K). CONCLUSION: The stabilization of KLF2 steady-state levels, as induced by prolonged shear stress but not by statins, may be essential for sustaining the quiescent, atheroprotective status of the vascular endothelium under inflammatory conditions.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , ARN Mensajero/metabolismo , Aterosclerosis/inmunología , Células Cultivadas , Cromonas/farmacología , Células Endoteliales/inmunología , Endotelio Vascular/inmunología , Técnica del Anticuerpo Fluorescente , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Técnicas In Vitro , Inflamación , Factores de Transcripción de Tipo Kruppel/genética , Morfolinas/farmacología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteína Oncogénica v-akt/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Mecánico , Trombomodulina/genética , Trombomodulina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Fam Cancer ; 16(2): 221-229, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27873144

RESUMEN

Missense variants of DNA mismatch repair (MMR) genes pose a problem in clinical genetics as long as they cannot unambiguously be assigned as the cause of Lynch syndrome (LS). To study such variants of uncertain clinical significance, we have developed a functional assay based on direct measurement of MMR activity in mouse embryonic stem cells expressing mutant protein from the endogenous alleles. We have applied this protocol to a specific truncation mutant of MSH2 that removes 60 C-terminal amino acids and has been found in suspected LS families. We show that the stability of the MSH2/MSH6 heterodimer is severely perturbed, causing attenuated MMR in in vitro assays and cancer predisposition in mice. This mutation can therefore unambiguously be considered as deleterious and causative for LS.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/metabolismo , Predisposición Genética a la Enfermedad , Proteína 2 Homóloga a MutS/genética , Alelos , Animales , Línea Celular , Humanos , Ratones , Células Madre Embrionarias de Ratones , Proteína 2 Homóloga a MutS/metabolismo , Mutación Missense
20.
Chemosphere ; 65(11): 2485-92, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16740292

RESUMEN

The effects of water flow rate and antifouling agents on the extent of biofouling and on the uptake of non-polar organic contaminants by semipermeable membrane devices (SPMDs) were studied during four field experiments in the Western Wadden Sea. Biofouling densities on the sampler surface ranged from 0.3 to 16g dry weight dm(-2). Water sampling rates were estimated from the dissipation rates of performance reference compounds (PRCs). The antifouling agents Irgarol and capsaicin (33 mg per ml triolein) had no noticeable effect on the extent of fouling, and caused only a 5-10% increase in the absorbed amounts. Enhanced flow rates had only a minimal effect on the amount of biofouling, but caused the water sampling rates to increase by a factor of 1.2-2. Increases in PRC-derived sampling rates were reflected by increases in the absorbed amounts for compounds that were in the linear uptake stage of the sampling process. The results imply (1) that extreme biofouling does not always result in reduced sampling rates, (2) that extreme biofouling does not preclude the existence of flow effects on the sampling rates, and (3) that differences in uptake rates are quantitatively reflected by the dissipation rates of PRCs.


Asunto(s)
Hidrocarburos Clorados/química , Membranas Artificiales , Plaguicidas/química , Bifenilos Policlorados/química , Compuestos Policíclicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA