Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38134932

RESUMEN

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Asunto(s)
Dermatitis Atópica , Inmunidad Innata , Pulmón , Células Receptoras Sensoriales , Animales , Humanos , Ratones , Citocinas , Dermatitis Atópica/inmunología , Inflamación , Pulmón/inmunología , Linfocitos , Células Receptoras Sensoriales/enzimología
2.
Blood ; 140(17): 1858-1874, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35789258

RESUMEN

The discovery of humans with monogenic disorders has a rich history of generating new insights into biology. Here we report the first human identified with complete deficiency of nuclear factor of activated T cells 1 (NFAT1). NFAT1, encoded by NFATC2, mediates calcium-calcineurin signals that drive cell activation, proliferation, and survival. The patient is homozygous for a damaging germline NFATC2 variant (c.2023_2026delTACC; p.Tyr675Thrfs∗18) and presented with joint contractures, osteochondromas, and recurrent B-cell lymphoma. Absence of NFAT1 protein in chondrocytes caused enrichment in prosurvival and inflammatory genes. Systematic single-cell-omic analyses in PBMCs revealed an environment that promotes lymphomagenesis with accumulation of naïve B cells (enriched for oncogenic signatures MYC and JAK1), exhausted CD4+ T cells, impaired T follicular helper cells, and aberrant CD8+ T cells. This work highlights the pleiotropic role of human NFAT1, will empower the diagnosis of additional patients with NFAT1 deficiency, and further defines the detrimental effects associated with long-term use of calcineurin inhibitors.


Asunto(s)
Contractura , Leucemia de Células B , Osteocondroma , Humanos , Calcineurina/genética , Leucemia de Células B/genética , Leucemia de Células B/metabolismo , Recurrencia Local de Neoplasia , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo
3.
Am J Med Genet A ; 194(6): e63548, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38264805

RESUMEN

Pathogenic PHF21A variation causes PHF21A-related neurodevelopmental disorders (NDDs). Although amorphic alleles, including haploinsufficiency, have been established as a disease mechanism, increasing evidence suggests that missense variants as well as frameshift variants extending the BHC80 carboxyl terminus also cause disease. Expanding on these, we report a proposita with intellectual disability and overgrowth and a novel de novo heterozygous PHF21A splice variant (NM_001352027.3:c.[153+1G>C];[=]) causing skipping of exon 6, which encodes an in-frame BHC80 deletion (p.(Asn30_Gln51del)). This deletion disrupts a predicted leucine zipper domain and implicates this domain in BHC80 function and as a target of variation causing PHF21A-related NDDs. This extension of understanding emphasizes the application of RNA analysis in precision genomic medicine practice.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Empalme del ARN , Femenino , Humanos , Alelos , Exones/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Empalme del ARN/genética , Análisis de Secuencia de ARN , Niño
4.
Pediatr Res ; 95(7): 1818-1825, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38212387

RESUMEN

BACKGROUND: Early identification of children at risk of asthma can have significant clinical implications for effective intervention and treatment. This study aims to disentangle the relative timing and importance of early markers of asthma. METHODS: Using the CHILD Cohort Study, 132 variables measured in 1754 multi-ethnic children were included in the analysis for asthma prediction. Data up to 4 years of age was used in multiple machine learning models to predict physician-diagnosed asthma at age 5 years. Both predictive performance and variable importance was assessed in these models. RESULTS: Early-life data (≤1 year) has limited predictive ability for physician-diagnosed asthma at age 5 years (area under the precision-recall curve (AUPRC) < 0.35). The earliest reliable prediction of asthma is achieved at age 3 years, (area under the receiver-operator curve (AUROC) > 0.90) and (AUPRC > 0.80). Maternal asthma, antibiotic exposure, and lower respiratory tract infections remained highly predictive throughout childhood. Wheezing status and atopy are the most important predictors of early childhood asthma from among the factors included in this study. CONCLUSIONS: Childhood asthma is predictable from non-biological measurements from the age of 3 years, primarily using parental asthma and patient history of wheezing, atopy, antibiotic exposure, and lower respiratory tract infections. IMPACT: Machine learning models can predict physician-diagnosed asthma in early childhood (AUROC > 0.90 and AUPRC > 0.80) using ≥3 years of non-biological and non-genetic information, whereas prediction with the same patient information available before 1 year of age is challenging. Wheezing, atopy, antibiotic exposure, lower respiratory tract infections, and the child's mother having asthma were the strongest early markers of 5-year asthma diagnosis, suggesting an opportunity for earlier diagnosis and intervention and focused assessment of patients at risk for asthma, with an evolving risk stratification over time.


Asunto(s)
Asma , Cohorte de Nacimiento , Aprendizaje Automático , Humanos , Asma/diagnóstico , Lactante , Preescolar , Femenino , Masculino , Canadá , Estudios Longitudinales , Factores de Riesgo , Ruidos Respiratorios , Recién Nacido , Infecciones del Sistema Respiratorio/diagnóstico
5.
J Med Genet ; 60(11): 1092-1104, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37316189

RESUMEN

BACKGROUND: Helios (encoded by IKZF2), a member of the Ikaros family of transcription factors, is a zinc finger protein involved in embryogenesis and immune function. Although predominantly recognised for its role in the development and function of T lymphocytes, particularly the CD4+ regulatory T cells (Tregs), the expression and function of Helios extends beyond the immune system. During embryogenesis, Helios is expressed in a wide range of tissues, making genetic variants that disrupt the function of Helios strong candidates for causing widespread immune-related and developmental abnormalities in humans. METHODS: We performed detailed phenotypic, genomic and functional investigations on two unrelated individuals with a phenotype of immune dysregulation combined with syndromic features including craniofacial differences, sensorineural hearing loss and congenital abnormalities. RESULTS: Genome sequencing revealed de novo heterozygous variants that alter the critical DNA-binding zinc fingers (ZFs) of Helios. Proband 1 had a tandem duplication of ZFs 2 and 3 in the DNA-binding domain of Helios (p.Gly136_Ser191dup) and Proband 2 had a missense variant impacting one of the key residues for specific base recognition and DNA interaction in ZF2 of Helios (p.Gly153Arg). Functional studies confirmed that both these variant proteins are expressed and that they interfere with the ability of the wild-type Helios protein to perform its canonical function-repressing IL2 transcription activity-in a dominant negative manner. CONCLUSION: This study is the first to describe dominant negative IKZF2 variants. These variants cause a novel genetic syndrome characterised by immunodysregulation, craniofacial anomalies, hearing impairment, athelia and developmental delay.


Asunto(s)
Anomalías Craneofaciales , Discapacidades del Desarrollo , Pérdida Auditiva , Factor de Transcripción Ikaros , Humanos , Proteínas de Unión al ADN/genética , Factor de Transcripción Ikaros/genética , Síndrome , Discapacidades del Desarrollo/genética , Anomalías Craneofaciales/genética
6.
Am J Med Genet A ; 191(8): 2219-2224, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196051

RESUMEN

Tandem splice acceptors (NAGNn AG) are a common mechanism of alternative splicing, but variants that are likely to generate or to disrupt tandem splice sites have rarely been reported as disease causing. We identify a pathogenic intron 23 CLTC variant (NM_004859.4:c.[3766-13_3766-5del];[=]) in a propositus with intellectual disability and behavioral problems. By RNAseq analysis of peripheral blood mRNA, this variant generates transcripts using cryptic proximal splice acceptors (NM_004859.4: r.3765_3766insTTCACAGAAAGGAACTAG, and NM_004859.4:r.3765_3766insAAAGGAACTAG). Given that the propositus expresses 38% the level of CLTC transcripts as unaffected controls, these variant transcripts, which encode premature termination codons, likely undergo nonsense mediated mRNA decay (NMD). This is the first functional evidence for CLTC haploinsufficiency as a cause of CLTC-related disorder and the first evidence that the generation of tandem alternative splice sites causes CLTC-related disorder. We suggest that variants creating tandem alternative splice sites are an underreported disease mechanism and that transcriptome-level analysis should be routinely pursued to define the pathogenicity of such variants.


Asunto(s)
Haploinsuficiencia , Sitios de Empalme de ARN , Humanos , Sitios de Empalme de ARN/genética , Haploinsuficiencia/genética , Empalme Alternativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mutación , Cadenas Pesadas de Clatrina/genética
7.
Am J Med Genet A ; 188(10): 3089-3095, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946377

RESUMEN

Alternative use of short distance tandem sites such as NAGNn AG are a common mechanism of alternative splicing; however, single nucleotide variants are rarely reported as likely to generate or to disrupt tandem splice sites. We identify a pathogenic intron 5 STK11 variant (NM_000455.4:c.[735-6A>G];[=]) segregating with the mucocutaneous features but not the hamartomatous polyps of Peutz-Jeghers syndrome in two individuals. By RNAseq analysis of peripheral blood mRNA, this variant was shown to generate a novel and preferentially used tandem proximal splice acceptor (AAGTGAAG). The variant transcript (NM_000455.4:c.734_734 + 1insTGAAG), which encodes a frameshift (p.[Tyr246Glufs*43]) constituted 36%-43% of STK11 transcripts suggesting partial escape from nonsense mediated mRNA decay and translation of a truncated protein. A review of the ClinVar database identified other similar variants. We suggest that nucleotide changes creating or disrupting tandem alternative splice sites are a pertinent disease mechanism and require contextualization for clinical reporting. Additionally, we hypothesize that some pathogenic STK11 variants cause an attenuated phenotype.


Asunto(s)
Síndrome de Peutz-Jeghers , Quinasas de la Proteína-Quinasa Activada por el AMP , Empalme Alternativo , Codón sin Sentido , Humanos , Nucleótidos , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/patología
8.
BMC Pediatr ; 21(1): 45, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33472608

RESUMEN

BACKGROUND: KRAS (KRAS proto-oncogene, GTPase; OMIM: 190,070) encodes one of three small guanosine triphosphatase proteins belonging to the RAS family. This group of proteins is responsible for cell proliferation, differentiation and inhibition of apoptosis. Gain-of-function variants in KRAS are commonly found in human cancers. Non-malignant somatic KRAS variants underlie a subset of RAS-associated autoimmune leukoproliferative disorders (RALD). RALD is characterized by splenomegaly, persistent monocytosis, hypergammaglobulinemia and cytopenia, but can also include autoimmune features and lymphadenopathy. In this report, we describe a non-malignant somatic variant in KRAS with prominent clinical features of massive splenomegaly, thrombocytopenia and lymphopenia. CASE PRESENTATION: A now-11-year-old girl presented in early childhood with easy bruising and bleeding, but had an otherwise unremarkable medical history. After consulting for the first time at 5 years of age, she was discovered to have massive splenomegaly. Clinical follow-up revealed thrombocytopenia, lymphopenia and increased polyclonal immunoglobulins and C-reactive protein. The patient had an unremarkable bone marrow biopsy, flow cytometry showed no indication of expanded double negative T-cells, while malignancy and storage disorders were also excluded. When the patient was 8 years old, whole exome sequencing performed on DNA derived from whole blood revealed a heterozygous gain-of-function variant in KRAS (NM_004985.5:c.37G > T; (p.G13C)). The variant was absent from DNA derived from a buccal swab and was thus determined to be somatic. CONCLUSIONS: This case of idiopathic splenomegaly in childhood due to a somatic variant in KRAS expands our understanding of the clinical spectrum of RAS-associated autoimmune leukoproliferative disorder and emphasizes the value of securing a molecular diagnosis in children with unusual early-onset presentations with a suspected monogenic origin.


Asunto(s)
Trastornos Linfoproliferativos , Esplenomegalia , Biopsia , Niño , Preescolar , Femenino , Citometría de Flujo , Humanos , Mutación , Proto-Oncogenes Mas , Esplenomegalia/etiología
9.
J Clin Immunol ; 40(2): 267-276, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31853824

RESUMEN

We report three new cases of a germline heterozygous gain-of-function missense (p.(Met1141Lys)) mutation in the C2 domain of phospholipase C gamma 2 (PLCG2) associated with symptoms consistent with previously described auto-inflammation and phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) syndrome and pediatric common variable immunodeficiency (CVID). Functional evaluation showed platelet hyper-reactivity, increased B cell receptor-triggered calcium influx and ERK phosphorylation. Expression of the altered p.(Met1141Lys) variant in a PLCγ2-knockout DT40 cell line showed clearly enhanced BCR-triggered influx of external calcium when compared to control-transfected cells. Our results further expand the molecular basis of pediatric CVID and phenotypic spectrum of PLCγ2-related defects.


Asunto(s)
Linfocitos B/inmunología , Inmunodeficiencia Variable Común/diagnóstico , Mutación de Línea Germinal/genética , Síndromes de Inmunodeficiencia/diagnóstico , Mutación Missense/genética , Fosfolipasa C gamma/genética , Autoinmunidad/genética , Señalización del Calcio , Línea Celular , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Fenotipo , Dominios Proteicos/genética
10.
Clin Immunol ; 175: 143-146, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28043923

RESUMEN

OBJECTIVES: Clinicians need to be aware of the growing list of defined monogenic etiologies of autoimmune diseases. This is particularly relevant when evaluating children, as these rare monogenic forms of autoimmunity tend to present very early in life. METHODS AND RESULTS: By harnessing the transformative power of next generation sequencing, we made the unifying diagnosis of RAS-associated autoimmune leukoproliferative disease (RALD), caused by the somatic gain-of-function p.G13C KRAS mutation, in a boy with the seemingly unrelated immune dysregulatory conditions of Rosai-Dorfman and systemic lupus erythematosus (SLE). CONCLUSIONS: This case expands our understanding of the clinical phenotypes associated with the extremely rare condition of RALD, and emphasizes the importance of always considering the possibility of a monogenic cause for autoimmunity, particularly when the disease manifestations begin early in life and do not follow a typical clinical course.


Asunto(s)
Autoinmunidad/genética , Histiocitosis Sinusal/genética , Lupus Eritematoso Sistémico/genética , Mutación/genética , Mutación/inmunología , Proteínas Proto-Oncogénicas p21(ras)/genética , Adolescente , Autoinmunidad/inmunología , Histiocitosis Sinusal/inmunología , Humanos , Lupus Eritematoso Sistémico/inmunología , Masculino , Síndrome
12.
Clin Immunol ; 163: 14-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26698383

RESUMEN

In this Letter to the Editor we report the case of two siblings with fatal pneumococcal meningitis as the initial manifestation of IRAK-4 deficiency caused by previously undescribed mutations in IRAK4. The letter also highlights the importance of invasive pneumococcal infection as a critical 'red flag' warning of the potential for an underlying primary immunodeficiency and identifies some of the challenges in making the clinical diagnosis of IRAK-4 deficiency.


Asunto(s)
Síndromes de Inmunodeficiencia/inmunología , Meningitis Neumocócica/inmunología , Preescolar , Resultado Fatal , Femenino , Humanos , Síndromes de Inmunodeficiencia/complicaciones , Síndromes de Inmunodeficiencia/genética , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Meningitis Neumocócica/etiología , Mutación , Linaje , Enfermedades de Inmunodeficiencia Primaria , Hermanos , Streptococcus pneumoniae
13.
HGG Adv ; 5(1): 100259, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38041405

RESUMEN

Microtubule affinity-regulating kinase 4 (MARK4) is a serine/threonine kinase that plays a key role in tau phosphorylation and regulation of the mammalian target of rapamycin (mTOR) pathway. Abnormal tau phosphorylation and dysregulation of the mTOR pathway are implicated in neurodegenerative and neurodevelopmental disorders. Here, we report a gain-of-function variant in MARK4 in two siblings with childhood-onset neurodevelopmental disability and dysmorphic features. The siblings carry a germline heterozygous missense MARK4 variant c.604T>C (p.Phe202Leu), located in the catalytic domain of the kinase, which they inherited from their unaffected, somatic mosaic mother. Functional studies show that this amino acid substitution has no impact on protein expression but instead increases the ability of MARK4 to phosphorylate tau isoforms found in the fetal and adult brain. The MARK4 variant also increases phosphorylation of ribosomal protein S6, indicating upregulation of the mTORC1 pathway. In this study, we link a germline monoallelic MARK4 variant to a childhood-onset neurodevelopmental disorder characterized by global developmental delay, intellectual disability, behavioral abnormalities, and dysmorphic features.


Asunto(s)
Mutación con Ganancia de Función , Trastornos del Neurodesarrollo , Humanos , Niño , Proteínas Serina-Treonina Quinasas/genética , Microtúbulos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Trastornos del Neurodesarrollo/genética
15.
Nat Commun ; 14(1): 4785, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644001

RESUMEN

Allergic diseases affect millions of people worldwide. An increase in their prevalence has been associated with alterations in the gut microbiome, i.e., the microorganisms and their genes within the gastrointestinal tract. Maturation of the infant immune system and gut microbiota occur in parallel; thus, the conformation of the microbiome may determine if tolerant immune programming arises within the infant. Here we show, using deeply phenotyped participants in the CHILD birth cohort (n = 1115), that there are early-life influences and microbiome features which are uniformly associated with four distinct allergic diagnoses at 5 years: atopic dermatitis (AD, n = 367), asthma (As, n = 165), food allergy (FA, n = 136), and allergic rhinitis (AR, n = 187). In a subset with shotgun metagenomic and metabolomic profiling (n = 589), we discover that impaired 1-year microbiota maturation may be universal to pediatric allergies (AD p = 0.000014; As p = 0.0073; FA p = 0.00083; and AR p = 0.0021). Extending this, we find a core set of functional and metabolic imbalances characterized by compromised mucous integrity, elevated oxidative activity, decreased secondary fermentation, and elevated trace amines, to be a significant mediator between microbiota maturation at age 1 year and allergic diagnoses at age 5 years (ßindirect = -2.28; p = 0.0020). Microbiota maturation thus provides a focal point to identify deviations from normative development to predict and prevent allergic disease.


Asunto(s)
Asma , Dermatitis Atópica , Microbioma Gastrointestinal , Hipersensibilidad , Microbiota , Lactante , Humanos , Niño , Microbioma Gastrointestinal/genética
16.
Med ; 4(2): 92-112.e5, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36603585

RESUMEN

BACKGROUND: Early antibiotic exposure is linked to persistent disruption of the infant gut microbiome and subsequent elevated pediatric asthma risk. Breastfeeding acts as a primary modulator of the gut microbiome during early life, but its effect on asthma development has remained unclear. METHODS: We harnessed the CHILD cohort to interrogate the influence of breastfeeding on antibiotic-associated asthma risk in a subset of children (n = 2,521). We then profiled the infant microbiomes in a subset of these children (n = 1,338) using shotgun metagenomic sequencing and compared human milk oligosaccharide and fatty acid composition from paired maternal human milk samples for 561 of these infants. FINDINGS: Children who took antibiotics without breastfeeding had 3-fold higher asthma odds, whereas there was no such association in children who received antibiotics while breastfeeding. This benefit was associated with widespread "re-balancing" of taxonomic and functional components of the infant microbiome. Functional changes associated with asthma protection were linked to enriched Bifidobacterium longum subsp. infantis colonization. Network analysis identified a selection of fucosylated human milk oligosaccharides in paired maternal samples that were positively associated with B. infantis and these broader functional changes. CONCLUSIONS: Our data suggest that breastfeeding and antibiotics have opposing effects on the infant microbiome and that breastfeeding enrichment of B. infantis is associated with reduced antibiotic-associated asthma risk. FUNDING: This work was supported in part by the Canadian Institutes of Health Research; the Allergy, Genes and Environment Network of Centres of Excellence; Genome Canada; and Genome British Columbia.


Asunto(s)
Asma , Microbiota , Sulfaleno , Niño , Lactante , Femenino , Humanos , Lactancia Materna , Antibacterianos/efectos adversos , Microbiota/genética , Bifidobacterium longum subspecies infantis , Oligosacáridos/uso terapéutico , Colombia Británica , Asma/epidemiología
17.
J Exp Med ; 220(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36884218

RESUMEN

STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder.


Asunto(s)
Asma , Hipersensibilidad a los Alimentos , Humanos , Factor de Transcripción STAT6 , Mutación con Ganancia de Función , Inmunoglobulina E/genética
18.
Sci Immunol ; 8(79): eade7953, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662884

RESUMEN

Interferon regulatory factor 4 (IRF4) is a transcription factor (TF) and key regulator of immune cell development and function. We report a recurrent heterozygous mutation in IRF4, p.T95R, causing an autosomal dominant combined immunodeficiency (CID) in seven patients from six unrelated families. The patients exhibited profound susceptibility to opportunistic infections, notably Pneumocystis jirovecii, and presented with agammaglobulinemia. Patients' B cells showed impaired maturation, decreased immunoglobulin isotype switching, and defective plasma cell differentiation, whereas their T cells contained reduced TH17 and TFH populations and exhibited decreased cytokine production. A knock-in mouse model of heterozygous T95R showed a severe defect in antibody production both at the steady state and after immunization with different types of antigens, consistent with the CID observed in these patients. The IRF4T95R variant maps to the TF's DNA binding domain, alters its canonical DNA binding specificities, and results in a simultaneous multimorphic combination of loss, gain, and new functions for IRF4. IRF4T95R behaved as a gain-of-function hypermorph by binding to DNA with higher affinity than IRF4WT. Despite this increased affinity for DNA, the transcriptional activity on IRF4 canonical genes was reduced, showcasing a hypomorphic activity of IRF4T95R. Simultaneously, IRF4T95R functions as a neomorph by binding to noncanonical DNA sites to alter the gene expression profile, including the transcription of genes exclusively induced by IRF4T95R but not by IRF4WT. This previously undescribed multimorphic IRF4 pathophysiology disrupts normal lymphocyte biology, causing human disease.


Asunto(s)
Regulación de la Expresión Génica , Factores Reguladores del Interferón , Ratones , Animales , Humanos , Linfocitos B , ADN/metabolismo , Mutación
19.
Eur J Med Genet ; 65(3): 104427, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35063693

RESUMEN

Disease-associated variants in KIAA1109 associate with autosomal recessive Alkuraya-Kucinskas syndrome, which is typified by cerebral parenchymal underdevelopment, clubfeet, and arthrogryposis. Biallelic truncating variants occur with severe disease resulting in miscarriage or early neonatal death, whereas biallelic missense variants can occur with a milder phenotype of global developmental delay and intracranial malformation. This suggests that hypomorphic alleles in KIAA1109 give rise to a milder phenotype than do amorphic alleles. We describe a consanguineous family with pseudodominant segregation of a homozygous noncanonical splice donor variant (NM_015312.2:c.[13438+3A>G];[13438+3A>G]) in mother and daughter. In peripheral blood, sequencing of cDNA detected skipping of exon 76 (NM_015312.3:c.13281_13438del) and, by qRT-PCR quantification, occurred in 82-95% of peripheral blood KIAA1109 mRNA. Although the deletion of exon 76 is predicted to encode p.(Trp4428Serfs*4), 46-83% of KIAA1109 mRNA in peripheral blood evaded nonsense mediated mRNA decay as measured by qRT-PCR. These observations expand understanding of the genotype-phenotype association in KIAA1109-related disease and suggest hypotheses for milder presentations of Alkuraya-Kucinskas syndrome.


Asunto(s)
Codón sin Sentido , Empalme del ARN , Variación Biológica Poblacional , Estudios de Asociación Genética , Humanos , Linaje
20.
JCI Insight ; 7(24)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36546480

RESUMEN

Primary atopic disorders are a group of inborn errors of immunity that skew the immune system toward severe allergic disease. Defining the biology underlying these extreme monogenic phenotypes reveals shared mechanisms underlying common polygenic allergic disease and identifies potential drug targets. Germline gain-of-function (GOF) variants in JAK1 are a cause of severe atopy and eosinophilia. Modeling the JAK1GOF (p.A634D) variant in both zebrafish and human induced pluripotent stem cells (iPSCs) revealed enhanced myelopoiesis. RNA-Seq of JAK1GOF human whole blood, iPSCs, and transgenic zebrafish revealed a shared core set of dysregulated genes involved in IL-4, IL-13, and IFN signaling. Immunophenotypic and transcriptomic analysis of patients carrying a JAK1GOF variant revealed marked Th cell skewing. Moreover, long-term ruxolitinib treatment of 2 children carrying the JAK1GOF (p.A634D) variant remarkably improved their growth, eosinophilia, and clinical features of allergic inflammation. This work highlights the role of JAK1 signaling in atopic immune dysregulation and the clinical impact of JAK1/2 inhibition in treating eosinophilic and allergic disease.


Asunto(s)
Eosinofilia , Hipersensibilidad Inmediata , Hipersensibilidad , Células Madre Pluripotentes Inducidas , Niño , Animales , Humanos , Mutación con Ganancia de Función , Pez Cebra , Hipersensibilidad/genética , Inflamación/genética , Eosinofilia/genética , Janus Quinasa 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA