Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Psychiatry ; 27(8): 3544-3555, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35449298

RESUMEN

The cumulative load of genetic predisposition, early life adversity (ELA) and lifestyle shapes the prevalence of psychiatric disorders. Single nucleotide polymorphisms (SNPs) in the human FKBP5 gene were shown to modulate disease risk. To enable investigation of disease-related SNPs in behaviourally relevant context, we generated humanised mouse lines carrying either the risk (AT) or the resiliency (CG) allele of the rs1360780 locus and exposed litters of these mice to maternal separation. Behavioural and physiological aspects of their adult stress responsiveness displayed interactions of genotype, early life condition, and sex. In humanised females carrying the CG- but not the AT-allele, ELA led to altered HPA axis functioning, exploratory behaviour, and sociability. These changes correlated with differential expression of genes in the hypothalamus, where synaptic transmission, metabolism, and circadian entrainment pathways were deregulated. Our data suggest an integrative role of FKBP5 in shaping the sex-specific outcome of ELA in adulthood.


Asunto(s)
Ritmo Circadiano , Sistema Hipotálamo-Hipofisario , Estrés Psicológico , Proteínas de Unión a Tacrolimus , Animales , Femenino , Humanos , Masculino , Ratones , Ritmo Circadiano/genética , Genotipo , Sistema Hipotálamo-Hipofisario/metabolismo , Privación Materna , Sistema Hipófiso-Suprarrenal/metabolismo , Polimorfismo de Nucleótido Simple , Estrés Psicológico/genética , Estrés Psicológico/psicología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
2.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33658344

RESUMEN

Infection with the Zika virus (ZIKV), a member of the Flaviviridae family, can cause serious neurological disorders, most notably microcephaly in newborns. Here we investigated the innate immune response to ZIKV infection in cells of the nervous system. In human neural progenitor cells (hNPCs), a target for ZIKV infection and likely involved in ZIKV-associated neuropathology, viral infection failed to elicit an antiviral interferon (IFN) response. However, pharmacological inhibition of TLR3 partially restored this deficit. Analogous results were obtained in human iPSC-derived astrocytes, which are capable of mounting a strong antiviral cytokine response. There, ZIKV is sensed by both RIG-I and MDA5 and induces an IFN response as well as expression of pro-inflammatory cytokines such as interleukin-6 (IL-6). Upon inhibition of TLR3, also in astrocytes the antiviral cytokine response was enhanced, whereas amounts of pro-inflammatory cytokines were reduced. To study the underlying mechanism, we used human epithelial cells as an easy to manipulate model system. We found that ZIKV is sensed in these cells by RIG-I to induce a robust IFN response and by TLR3 to trigger the expression of pro-inflammatory cytokines, including IL-6. ZIKV induced upregulation of IL-6 activated the STAT3 pathway, which decreased STAT1 phosphorylation in a SOCS-3 dependent manner, thus reducing the IFN response. In conclusion, we show that TLR3 activation by ZIKV suppresses IFN responses triggered by RIG-I-like receptors.ImportanceZika virus (ZIKV) has a pronounced neurotropism and infections with this virus can cause serious neurological disorders, most notably microcephaly and the Guillain-Barré syndrome. Our studies reveal that during ZIKV infection, recognition of viral RNA by TLR3 enhances the production of inflammatory cytokines and suppresses the interferon response triggered by RIG-I-like receptors (RLR) in a SOCS3-dependent manner, thus facilitating virus replication. The discovery of this crosstalk between antiviral (RLR) and inflammatory (TLR) responses may have important implications for our understanding of ZIKV-induced pathogenesis.

3.
J Neurosci ; 38(11): 2780-2795, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29459374

RESUMEN

A homozygous nonsense mutation in the cereblon (CRBN) gene results in autosomal recessive, nonsyndromic intellectual disability that is devoid of other phenotypic features, suggesting a critical role of CRBN in mediating learning and memory. In this study, we demonstrate that adult male Crbn knock-out (CrbnKO) mice exhibit deficits in hippocampal-dependent learning and memory tasks that are recapitulated by focal knock-out of Crbn in the adult dorsal hippocampus, with no changes in social or repetitive behavior. Cellular studies identify deficits in long-term potentiation at Schaffer collateral CA1 synapses. We further show that Crbn is robustly expressed in the mouse hippocampus and CrbnKO mice exhibit hyperphosphorylated levels of AMPKα (Thr172). Examination of processes downstream of AMP-activated protein kinase (AMPK) finds that CrbnKO mice have a selective impairment in mediators of the mTORC1 translation initiation pathway in parallel with lower protein levels of postsynaptic density glutamatergic proteins and higher levels of excitatory presynaptic markers in the hippocampus with no change in markers of the unfolded protein response or autophagy pathways. Acute pharmacological inhibition of AMPK activity in adult CrbnKO mice rescues learning and memory deficits and normalizes hippocampal mTORC1 activity and postsynaptic glutamatergic proteins without altering excitatory presynaptic markers. Thus, this study identifies that loss of Crbn results in learning, memory, and synaptic defects as a consequence of exaggerated AMPK activity, inhibition of mTORC1 signaling, and decreased glutamatergic synaptic proteins. Thus, CrbnKO mice serve as an ideal model of intellectual disability to further explore molecular mechanisms of learning and memory.SIGNIFICANCE STATEMENT Intellectual disability (ID) is one of the most common neurodevelopmental disorders. The cereblon (CRBN) gene has been linked to autosomal recessive, nonsyndromic ID, characterized by an intelligence quotient between 50 and 70 but devoid of other phenotypic features, making cereblon an ideal protein for the study of the fundamental aspects of learning and memory. Here, using the cereblon knock-out mouse model, we show that cereblon deficiency disrupts learning, memory, and synaptic function via AMP-activated protein kinase hyperactivity, downregulation of mTORC1, and dysregulation of excitatory synapses, with no changes in social or repetitive behaviors, consistent with findings in the human population. This establishes the cereblon knock-out mouse as a model of pure ID without the confounding behavioral phenotypes associated with other current models of ID.


Asunto(s)
Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/fisiopatología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Región CA1 Hipocampal/fisiopatología , Potenciales Postsinápticos Excitadores/genética , Hipocampo/metabolismo , Hipocampo/fisiopatología , Discapacidad Intelectual/tratamiento farmacológico , Discapacidades para el Aprendizaje/tratamiento farmacológico , Potenciación a Largo Plazo/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/biosíntesis , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Inhibidores de Proteínas Quinasas/uso terapéutico , Conducta Social
4.
J Biol Chem ; 291(33): 17209-27, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27325702

RESUMEN

The amyloid precursor protein (APP), whose mutations cause Alzheimer disease, plays an important in vivo role and facilitates transmitter release. Because the APP cytosolic region (ACR) is essential for these functions, we have characterized its brain interactome. We found that the ACR interacts with proteins that regulate the ubiquitin-proteasome system, predominantly with the E3 ubiquitin-protein ligases Stub1, which binds the NH2 terminus of the ACR, and CRL4(CRBN), which is formed by Cul4a/b, Ddb1, and Crbn, and interacts with the COOH terminus of the ACR via Crbn. APP shares essential functions with APP-like protein-2 (APLP2) but not APP-like protein-1 (APLP1). Noteworthy, APLP2, but not APLP1, interacts with Stub1 and CRL4(CRBN), pointing to a functional pathway shared only by APP and APLP2. In vitro ubiquitination/ubiquitome analysis indicates that these E3 ligases are enzymatically active and ubiquitinate the ACR residues Lys(649/650/651/676/688) Deletion of Crbn reduces ubiquitination of Lys(676) suggesting that Lys(676) is physiologically ubiquitinated by CRL4(CRBN) The ACR facilitated in vitro ubiquitination of presynaptic proteins that regulate exocytosis, suggesting a mechanism by which APP tunes transmitter release. Other dementia-related proteins, namely Tau and apoE, interact with and are ubiquitinated via the ACR in vitro This, and the evidence that CRBN and CUL4B are linked to intellectual disability, prompts us to hypothesize a pathogenic mechanism, in which APP acts as a modulator of E3 ubiquitin-protein ligase(s), shared by distinct neuronal disorders. The well described accumulation of ubiquitinated protein inclusions in neurodegenerative diseases and the link between the ubiquitin-proteasome system and neurodegeneration make this concept plausible.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Complejos Multienzimáticos/metabolismo , Transmisión Sináptica , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Complejos Multienzimáticos/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Neurobiol Learn Mem ; 126: 18-30, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26528887

RESUMEN

Mutations in Amyloid ß Precursor Protein (APP) and in genes that regulate APP processing--such as PSEN1/2 and ITM2b/BRI2--cause familial dementia, such Familial Alzheimer disease (FAD), Familial Danish (FDD) and British (FBD) dementias. The ApoE gene is the major genetic risk factor for sporadic AD. Three major variants of ApoE exist in humans (ApoE2, ApoE3, and ApoE4), with the ApoE4 allele being strongly associated with AD. ITM2b/BRI2 is also a candidate regulatory node genes predicted to mediate the common patterns of gene expression shared by healthy ApoE4 carriers and late-onset AD patients not carrying ApoE4. This evidence provides a direct link between ITM2b/BRI2 and ApoE4. To test whether ApoE4 and pathogenic ITM2b/BRI2 interact to modulate learning and memory, we crossed a mouse carrying the ITM2b/BRI2 mutations that causes FDD knocked-in the endogenous mouse Itm2b/Bri2 gene (FDDKI mice) with human ApoE3 and ApoE4 targeted replacement mice. The resultant ApoE3, FDDKI/ApoE3, ApoE4, FDDKI/ApoE4 male mice were assessed longitudinally for learning and memory at 4, 6, 12, and 16-17 months of age. The results showed that ApoE4-carrying mice displayed spatial working/short-term memory deficits relative to ApoE3-carrying mice starting in early middle age, while long-term spatial memory of ApoE4 mice was not adversely affected even at 16-17 months, and that the FDD mutation impaired working/short-term spatial memory in ApoE3-carrying mice and produced impaired long-term spatial memory in ApoE4-carrying mice in middle age. The present results suggest that the FDD mutation may differentially affect learning and memory in ApoE4 carriers and non-carriers.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Catarata/genética , Ataxia Cerebelosa/genética , Sordera/genética , Demencia/genética , Aprendizaje/fisiología , Proteínas de la Membrana/genética , Mutación , Proteínas Adaptadoras Transductoras de Señales , Animales , Catarata/psicología , Ataxia Cerebelosa/psicología , Sordera/psicología , Demencia/psicología , Humanos , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas , Memoria Espacial/fisiología
6.
J Neurosci ; 32(34): 11820-34, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22915123

RESUMEN

In Alzheimer disease (AD), the perturbation of the endoplasmic reticulum (ER) calcium (Ca²âº) homeostasis has been linked to presenilins, the catalytic core in γ-secretase complexes cleaving the amyloid precursor protein (APP), thereby generating amyloid-ß (Aß) peptides. Here we investigate whether APP contributes to ER Ca²âº homeostasis and whether ER Ca²âº could in turn influence Aß production. We show that overexpression of wild-type human APP (APP(695)), or APP harboring the Swedish double mutation (APP(swe)) triggers increased ryanodine receptor (RyR) expression and enhances RyR-mediated ER Ca²âº release in SH-SY5Y neuroblastoma cells and in APP(swe)-expressing (Tg2576) mice. Interestingly, dantrolene-induced lowering of RyR-mediated Ca²âº release leads to the reduction of both intracellular and extracellular Aß load in neuroblastoma cells as well as in primary cultured neurons derived from Tg2576 mice. This Aß reduction can be accounted for by decreased Thr-668-dependent APP phosphorylation and ß- and γ-secretases activities. Importantly, dantrolene diminishes Aß load, reduces Aß-related histological lesions, and slows down learning and memory deficits in Tg2576 mice. Overall, our data document a key role of RyR in Aß production and learning and memory performances, and delineate RyR-mediated control of Ca²âº homeostasis as a physiological paradigm that could be targeted for innovative therapeutic approaches.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Enfermedad de Alzheimer/genética , Aminofenoles/uso terapéutico , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Encéfalo/citología , Cafeína/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/uso terapéutico , Células Cultivadas , Citosol/efectos de los fármacos , Citosol/metabolismo , Dantroleno/farmacología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Inhibidores Enzimáticos/uso terapéutico , Conducta Exploratoria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Maleimidas/uso terapéutico , Aprendizaje por Laberinto/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Proteínas de la Membrana/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Transgénicos , Relajantes Musculares Centrales/farmacología , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/patología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Fragmentos de Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Purinas/uso terapéutico , ARN Mensajero/metabolismo
7.
J Biol Chem ; 287(29): 24573-84, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22654105

RESUMEN

Anatomical lesions in Alzheimer disease-affected brains mainly consist of senile plaques, inflammation stigmata, and oxidative stress. The nuclear factor-κB (NF-κB) is a stress-activated transcription factor that is activated around senile plaques. We have assessed whether NF-κB could be differentially regulated at physiological or supraphysiological levels of amyloid ß (Aß) peptides. Under these experimental conditions, we delineated the putative NF-κB-dependent modulation of all cellular participants in Aß production, namely its precursor ßAPP (ß-amyloid precursor protein) and the ß- and γ-secretases, the two enzymatic machines involved in Aß genesis. Under physiological conditions, NF-κB lowers the transcriptional activity of the promoters of ßAPP, ß-secretase (ß-site APP-cleaving enzyme 1, BACE1), and of the four protein components (Aph-1, Pen-2, nicastrin, presenilin-1, or presenilin-2) of the γ-secretase in HEK293 cells. This was accompanied by a reduction of both protein levels and enzymatic activities, thereby ultimately yielding lower amounts of Aß and AICD (APP intracellular domain). In stably transfected Swedish ßAPP-expressing HEK293 cells triggering supraphysiological concentrations of Aß peptides, NF-κB activates the transcription of ßAPP, BACE1, and some of the γ-secretase members and increases protein expression and enzymatic activities, resulting in enhanced Aß production. Our pharmacological approach using distinct NF-κB kinase modulators indicates that both NF-κB canonical and alternative pathways are involved in the control of Aß production. Overall, our data demonstrate that under physiological conditions, NF-κB triggers a repressive effect on Aß production that contributes to maintaining its homeostasis, while NF-κB participates in a degenerative cycle where Aß would feed its own production under pathological conditions.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , FN-kappa B/farmacología , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Western Blotting , Línea Celular , Expresión Génica/efectos de los fármacos , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Regiones Promotoras Genéticas/genética
9.
Exp Cell Res ; 315(2): 162-75, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19010321

RESUMEN

Pax8 and TTF-1 are transcription factors involved in the morphogenesis of the thyroid gland and in the transcriptional regulation of thyroid-specific genes. Both proteins are expressed in few tissues but their simultaneous presence occurs only in the thyroid where they interact physically and functionally allowing the regulation of genes that are markers of the thyroid differentiated phenotype. TAZ is a transcriptional coactivator that regulates the activity of several transcription factors therefore playing a central role in tissue-specific transcription. The recently demonstrated physical and functional interaction between TAZ and TTF-1 in the lung raised the question of whether TAZ could be an important regulatory molecule also in the thyroid. In this study, we demonstrate the presence of TAZ in thyroid cells and the existence of an important cooperation between TAZ and the transcription factors Pax8 and TTF-1 in the modulation of thyroid gene expression. In addition, we reveal that the three proteins are co-expressed in the nucleus of differentiated thyroid cells and that TAZ interacts with both Pax8 and TTF-1, in vitro and in vivo. More importantly, we show that this interaction leads to a significant enhancement of the transcriptional activity of Pax8 and TTF-1 on the thyroglobulin promoter thus suggesting a role of TAZ in the control of genes involved in thyroid development and differentiation.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Paired Box/metabolismo , Glándula Tiroides/metabolismo , Factores de Transcripción/fisiología , Aciltransferasas , Animales , Western Blotting , Línea Celular , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HeLa , Humanos , Hibridación in Situ , Masculino , Ratones , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/genética , Unión Proteica , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tiroglobulina/genética , Tiroglobulina/metabolismo , Glándula Tiroides/citología , Glándula Tiroides/embriología , Factor Nuclear Tiroideo 1 , Transactivadores/genética , Transactivadores/metabolismo , Transactivadores/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Sci Rep ; 8(1): 3184, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29453339

RESUMEN

Tau plays a pivotal role in the pathogenesis of neurodegenerative disorders: mutations in the gene encoding for tau (MAPT) are linked to Fronto-temporal Dementia (FTD) and hyper-phosphorylated aggregates of tau forming neurofibrillary tangles (NFTs) that constitute a pathological hallmark of Alzheimer disease (AD) and FTD. Accordingly, tau is a favored therapeutic target for the treatment of these diseases. Given the criticality of tau to dementia's pathogenesis and therapy, it is important to understand the physiological function of tau in the central nervous system. Analysis of Mapt knock out (Mapt-/-) mice has yielded inconsistent results. Some studies have shown that tau deletion does not alter memory while others have described synaptic plasticity and memory alterations in Mapt-/- mice. To help clarifying these contrasting results, we analyzed a distinct Mapt-/- model on a B6129PF3/J genetic background. We found that tau deletion leads to aging-dependent short-term memory deficits, hyperactivity and synaptic plasticity defects. In contrast, Mapt+/- mice only showed a mild short memory deficit in the novel object recognition task. Thus, while tau is important for normal neuronal functions underlying learning and memory, partial reduction of tau expression may have fractional deleterious effects.


Asunto(s)
Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Proteínas tau/fisiología , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/patología , Hipocampo/patología , Masculino , Memoria/fisiología , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovillos Neurofibrilares/metabolismo , Neuronas/metabolismo , Fosforilación , Proteínas tau/genética , Proteínas tau/metabolismo
11.
J Alzheimers Dis ; 55(4): 1549-1570, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27911326

RESUMEN

Alteration of mitochondria-associated membranes (MAMs) has been proposed to contribute to the pathogenesis of Alzheimer's disease (AD). We studied herein the subcellular distribution, the processing, and the protein interactome of the amyloid-ß protein precursor (AßPP) and its proteolytic products in MAMs. We reveal that AßPP and its catabolites are present in MAMs in cellular models overexpressing wild type AßPP or AßPP harboring the double Swedish or London familial AD mutations, and in brains of transgenic mice model of AD. Furthermore, we evidenced that both ß- and γ-secretases are present and harbor AßPP processing activities in MAMs. Interestingly, cells overexpressing APPswe show increased ER-mitochondria contact sites. We also document increased neutral lipid accumulation linked to Aß production and reversed by inhibiting ß- or γ-secretases. Using a proteomic approach, we show that AßPP and its catabolites interact with key proteins of MAMs controlling mitochondria and ER functions. These data highlight the role of AßPP processing and proteomic interactome in MAMs deregulation taking place in AD.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Mitocondrias/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Células CHO , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Cricetulus , Complejo IV de Transporte de Electrones/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Inmunoprecipitación , Ratones , Ratones Transgénicos , Microscopía Electrónica , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Mutación/genética , Neuroblastoma/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Pirazoles/farmacología , Quinolinas/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transfección , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
12.
Oncotarget ; 7(11): 11923-44, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26942869

RESUMEN

Mutations in BRI2/ITM2b genes cause Familial British and Danish Dementias (FBD and FDD), which are pathogenically similar to Familial Alzheimer Disease (FAD). BRI2 inhibits processing of Amyloid precursor protein (APP), a protein involved in FAD pathogenesis. Accumulation of a carboxyl-terminal APP metabolite -ß-CTF- causes memory deficits in a knock-in mouse model of FDD, called FDDKI.We have investigated further the pathogenic function of ß-CTF studying the effect of Aph1B/C deletion on FDDKI mice. This strategy is based on the evidence that deletion of Aph1B/C proteins, which are components of the γ-secretase that cleaves ß-CTF, results in stabilization of ß-CTF and a reduction of Aß. We found that both the FDD mutation and the Aph1B/C deficiency mildly interfered with spatial long term memory, spatial working/short-term memory and long-term contextual fear memory. In addition, the Aph1BC deficiency induced deficits in long-term cued fear memory. Moreover, the two mutations have additive adverse effects as they compromise the accuracy of spatial long-term memory and induce spatial memory retention deficits in young mice. Overall, the data are consistent with a role for ß-CTF in the genesis of memory deficits.


Asunto(s)
Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Catarata/patología , Ataxia Cerebelosa/patología , Sordera/patología , Demencia/patología , Modelos Animales de Enfermedad , Trastornos de la Memoria/patología , Mutación , Enfermedad de Alzheimer/genética , Animales , Conducta Animal , Catarata/genética , Ataxia Cerebelosa/genética , Sordera/genética , Demencia/genética , Técnicas de Sustitución del Gen , Humanos , Masculino , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
Elife ; 4: e09743, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26551565

RESUMEN

The amyloid precursor protein (APP), whose mutations cause familial Alzheimer's disease, interacts with the synaptic release machinery, suggesting a role in neurotransmission. Here we mapped this interaction to the NH2-terminal region of the APP intracellular domain. A peptide encompassing this binding domain -named JCasp- is naturally produced by a γ-secretase/caspase double-cut of APP. JCasp interferes with the APP-presynaptic proteins interaction and, if linked to a cell-penetrating peptide, reduces glutamate release in acute hippocampal slices from wild-type but not APP deficient mice, indicating that JCasp inhibits APP function.The APP-like protein-2 (APLP2) also binds the synaptic release machinery. Deletion of APP and APLP2 produces synaptic deficits similar to those caused by JCasp. Our data support the notion that APP and APLP2 facilitate transmitter release, likely through the interaction with the neurotransmitter release machinery. Given the link of APP to Alzheimer's disease, alterations of this synaptic role of APP could contribute to dementia.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/fisiología , Neurotransmisores/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Precursor de Proteína beta-Amiloide/genética , Animales , Eliminación de Gen , Ratones Endogámicos C57BL , Unión Proteica , Mapeo de Interacción de Proteínas
14.
Mol Neurodegener ; 9: 21, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24902695

RESUMEN

Perturbed Endoplasmic Reticulum (ER) calcium (Ca2+) homeostasis emerges as a central player in Alzheimer disease (AD). Accordingly, different studies have reported alterations of the expression and the function of Ryanodine Receptors (RyR) in human AD-affected brains, in cells expressing familial AD-linked mutations on the ß amyloid precursor protein (ßAPP) and presenilins (the catalytic core in γ-secretase complexes cleaving the ßAPP, thereby generating amyloid ß (Aß) peptides), as well as in the brain of various transgenic AD mice models. Data converge to suggest that RyR expression and function alteration are associated to AD pathogenesis through the control of: i) ßAPP processing and Aß peptide production, ii) neuronal death; iii) synaptic function; and iv) memory and learning abilities. In this review, we document the network of evidences suggesting that RyR could play a complex dual "compensatory/protective versus pathogenic" role contributing to the setting of histopathological lesions and synaptic deficits that are associated with the disease stages. We also discuss the possible mechanisms underlying RyR expression and function alterations in AD. Finally, we review recent publications showing that drug-targeting blockade of RyR and genetic manipulation of RyR reduces Aß production, stabilizes synaptic transmission, and prevents learning and memory deficits in various AD mouse models. Chemically-designed RyR "modulators" could therefore be envisioned as new therapeutic compounds able to delay or block the progression of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Humanos
15.
PLoS One ; 9(9): e108576, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25247712

RESUMEN

Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central functional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/ß/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/fisiología , Secretasas de la Proteína Precursora del Amiloide/deficiencia , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/deficiencia , Animales , Ácido Aspártico Endopeptidasas/deficiencia , Fraccionamiento Celular/métodos , Endocitosis/fisiología , Exocitosis/fisiología , Hipocampo/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Inmunoelectrónica , Proteínas del Tejido Nervioso/metabolismo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Fracciones Subcelulares/química
16.
J Mol Endocrinol ; 41(5): 379-88, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18768662

RESUMEN

Pax8 is a transcription factor that plays an important role in the regulation of genes that are exclusively expressed in differentiated thyroid cells. In the thyroid cell environment, evidence exists that Pax8 is part of a multiprotein complex in which its transcriptional activity may be modulated by specific co-factors. In an attempt to identify proteins that interact with Pax8, we performed pull-down experiments challenging the GST-Pax8 fusion protein with protein extracts prepared from the thyroid differentiated cell line PC Cl3. By this approach, we isolated a 113-kDa protein that is able to associate with Pax8, which was further identified by mass fingerprint experiments as poly(ADP-ribose) polymerase 1 (PARP1). To further confirm this interaction, we also showed that PARP1 can be co-immunoprecipitated with Pax8 in vivo from a thyroid cell extract. Gel shifts experiments demonstrated that PARP1 binding to Pax8 significantly inhibits Pax8 binding to DNA. Accordingly, we provide evidence that the functional outcome of such an interaction is a significant downregulation of Pax8 transcriptional activity. In the context of thyroid-specific gene transcription, our results suggest that PARP1 behaves as an important negative co-factor involved in the regulation of Pax8-dependent gene expression.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción Paired Box/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transcripción Genética , Animales , Línea Celular , Genes Reporteros , Humanos , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/genética , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA