Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Bot ; 111(7): e16365, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38992900

RESUMEN

PREMISE: The domestication of wild plant species can begin with gathering and transport of propagules by Indigenous peoples. The effect on genomic composition, especially in clonal, self-incompatible perennials would be instantaneous and drastic with respect to new, anthropogenic populations subsequently established. Reductions in genetic diversity and mating capability would be symptomatic and the presence of unique alleles and genetic sequences would reveal the origins and ancestry of populations associated with archaeological sites. The current distribution of the Four Corners potato, Solanum jamesii Torr. in the Southwestern USA, may thus reflect the early stages of a domestication process that began with tuber transport. METHODS: Herein genetic sequencing (GBS) data are used to further examine the hypothesis of domestication in this culturally significant species by sampling 25 archaeological and non-archaeological populations. RESULTS: Archaeological populations from Utah, Colorado and northern Arizona have lower levels of polymorphic loci, unique alleles, and heterozygosity than non-archaeological populations from the Mogollon region of central Arizona and New Mexico. Principle components analysis, Fst values, and structure analysis revealed that genetic relationships among archaeological populations did not correspond to geographic proximity. Populations in Escalante, Utah were related to those on the Mogollon Rim (400 km south) and had multiple origins and significant disjunctions with those populations in Bears Ears, Chaco Canyon, and Mesa Verde sites. CONCLUSIONS: Movement of tubers from the Mogollon region may have occurred many times and in multiple directions during the past, resulting in the complex genetic patterns seen in populations from across the Four Corners region.


Asunto(s)
Arqueología , Efecto Fundador , Solanum , Solanum/genética , Humanos , Domesticación , Sudoeste de Estados Unidos , Variación Genética , Análisis de Secuencia de ADN , Arizona , New Mexico
2.
Genet Mol Biol ; 47(1): e20230110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38488523

RESUMEN

Butyrate is a promising candidate for an antitumoral drug, as it promotes cancer cell apoptosis and reduces hormone receptor activity, while promoting differentiation and proliferation in normal cells. However, the effects of low-dose butyrate on breast cancer cell cultures are unclear. We explored the impact of sub-therapeutic doses of butyrate on estrogen receptor alpha (ERα) transcriptional activity in MCF-7 cells, using RT-qPCR, Western blot, wound-healing assays, and chromatin immunoprecipitation. Our results showed that sub-therapeutic doses of sodium butyrate (0.1 - 0.2 mM) increased the transcription of ESR1, TFF1, and CSTD genes, but did not affect ERα protein levels. Moreover, we observed an increase in cell migration in wound-healing assays. ChIP assays revealed that treatment with 0.1 mM of sodium butyrate resulted in estrogen-independent recruitment of ERα at the pS2 promoter and loss of NCoR. Appropriate therapeutic dosage of butyrate is essential to avoid potential adverse effects on patients' health, especially in the case of estrogen receptor-positive breast tumors. Sub-therapeutic doses of butyrate may induce undesirable cell processes, such as migration due to low-dose butyrate-mediated ERα activation. These findings shed light on the complex effects of butyrate in breast cancer and provide insights for research in the development of antitumoral drugs.

3.
Toxicol Appl Pharmacol ; 472: 116573, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37269932

RESUMEN

Arsenic is associated with the development of breast cancer. However, the molecular mechanisms of arsenic induction of breast cancer are not fully defined. Interaction with zinc finger (ZnF) motifs in proteins is one of the proposed mechanisms of arsenic toxicity. GATA3 is a transcription factor that regulates the transcription of genes associated with cell proliferation, cell differentiation and the epithelial-mesenchymal transition (EMT) in mammary luminal cells. Given that GATA3 possesses two ZnF motifs essential for the function of this protein and that arsenic could alter the function of GATA3 through interaction with these structural motifs, we evaluated the effect of sodium arsenite (NaAsO2) on GATA3 function and its relevance in the development of arsenic-induced breast cancer. Breast cell lines derived from normal mammary epithelium (MCF-10A), hormone receptor-positive and hormone receptor negative breast cancer cells (T-47D and MDA-MB-453, respectively) were used. We observed a reduction on GATA3 protein levels at non-cytotoxic concentrations of NaAsO2 in MCF-10A and T-47D, but not in MDA-MB-453 cells. This reduction was associated with an increase in cell proliferation and cell migration in MCF-10A, but not in T-47D or MDA-MB-453 cells. The evaluation of cell proliferation and EMT markers indicate that the reduction on GATA3 protein levels by arsenic, disrupts the function of this transcription factor. Our data indicate that GATA3 is a tumor suppressor in the normal mammary epithelium and that arsenic could act as an initiator of breast cancer by disrupting the function of GATA3.


Asunto(s)
Arsénico , Neoplasias de la Mama , Factor de Transcripción GATA3 , Femenino , Humanos , Arsénico/toxicidad , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Células Epiteliales/metabolismo , Factor de Transcripción GATA3/antagonistas & inhibidores , Factor de Transcripción GATA3/metabolismo , Factores de Transcripción
4.
Mol Genet Metab ; 133(2): 137-147, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795191

RESUMEN

Tristetraprolin (TTP) is a nucleocytoplasmic 326 amino acid protein whose sequence is characterized by possessing two CCCH-type zinc finger domains. In the cytoplasm TTP function is to promote the degradation of mRNAs that contain adenylate/uridylate-rich elements (AREs). Mechanistically, TTP promotes the recruitment of poly(A)-specific deadenylases and exoribonucleases. By reducing the half-life of about 10% of all the transcripts in the cell TTP has been shown to participate in multiple cell processes that include regulation of gene expression, cell proliferation, metabolic homeostasis and control of inflammation and immune responses. However, beyond its role in mRNA decay, in the cell nucleus TTP acts as a transcriptional coregulator by interacting with chromatin modifying enzymes. TTP has been shown to repress the transactivation of NF-κB and estrogen receptor suggesting the possibility that it participates in the transcriptional regulation of hundreds of genes in human cells and its possible involvement in breast cancer progression. In this review, we discuss the cytoplasmic and nuclear functions of TTP and the effect of the dysregulation of its protein levels in the development of human diseases. We suggest that TTP be classified as a moonlighting tumor supressor protein that regulates gene expression through two different mechanims; the decay of ARE-mRNAs and a transcriptional coregulatory function.


Asunto(s)
Citosol/metabolismo , ARN Mensajero/metabolismo , Activación Transcripcional/genética , Tristetraprolina/genética , Proliferación Celular/genética , Regulación de la Expresión Génica/genética , Humanos , Inflamación/genética , Inflamación/patología , Estabilidad del ARN/genética , ARN Mensajero/genética , Tristetraprolina/metabolismo , Dedos de Zinc/genética
5.
Toxicol Appl Pharmacol ; 431: 115738, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34619159

RESUMEN

Millions of people worldwide are exposed to arsenic, a metalloid listed as one of the top chemical pollutants of concern to human health. Epidemiological and experimental studies link arsenic exposure to the development of cancer and other diseases. Several mechanisms have been proposed to explain the effects induced by arsenic. Notably, arsenic and its metabolites interact with proteins by direct binding to individual cysteine residues, cysteine clusters, zinc finger motifs, and RING finger domains. Consequently, arsenic interactions with proteins disrupt the functions of proteins and may lead to the development and progression of diseases. In this review, we focus on current evidence in the literature that implicates the interaction of arsenic with proteins as a mechanism of arsenic toxicity. Data show that arsenic-protein interactions affect multiple cellular processes and alter epigenetic regulation, cause endocrine disruption, inhibit DNA damage repair mechanisms, and deregulate gene expression, among other adverse effects.


Asunto(s)
Intoxicación por Arsénico/etiología , Arsenicales/efectos adversos , Disruptores Endocrinos/efectos adversos , Contaminantes Ambientales/efectos adversos , Proteínas/metabolismo , Animales , Intoxicación por Arsénico/genética , Intoxicación por Arsénico/metabolismo , Arsenicales/metabolismo , Cisteína , Reparación del ADN/efectos de los fármacos , Disruptores Endocrinos/metabolismo , Contaminantes Ambientales/metabolismo , Epigénesis Genética/efectos de los fármacos , Humanos , Unión Proteica , Proteínas/genética , Dominios RING Finger , Medición de Riesgo , Dedos de Zinc
6.
Am J Bot ; 108(9): 1808-1815, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34590302

RESUMEN

PREMISE: Plant domestication can be detected when transport, use, and manipulation of propagules impact reproductive functionality, especially in species with self-incompatible breeding systems. METHODS: Evidence for human-caused founder effect in the Four Corners potato (Solanum jamesii Torr.) was examined by conducting 526 controlled matings between archaeological and non-archaeological populations from field-collected tubers grown in a greenhouse. Specimens from 24 major herbaria and collection records from >160 populations were examined to determine which produced fruits. RESULTS: Archaeological populations did not produce any fruits when self-crossed or outcrossed between individuals from the same source. A weak ability to self- or outcross within populations was observed in non-archaeological populations. Outcrossing between archaeological and non-archaeological populations, however, produced fully formed, seed-containing fruits, especially with a non-archaeological pollen source. Fruit formation was observed in 51 of 162 occurrences, with minimal evidence of constraint by monsoonal drought, lack of pollinators, or spatial separation of suitable partners. Some archaeological populations (especially those along ancient trade routes) had records of fruit production (Chaco Canyon), while others (those in northern Arizona, western Colorado, and southern Utah) did not. CONCLUSIONS: The present study suggests that archaeological populations could have different origins at different times-some descending directly from large gene pools to the south and others derived from gardens already established around occupations. The latter experienced a chain of founder events, which presumably would further reduce genetic diversity and mating capability. Consequently, some archaeological populations lack the genetic ability to sexually reproduce, likely as the result of human-caused founder effect.


Asunto(s)
Solanum , Efecto Fundador , Geografía , Humanos , Fitomejoramiento , Polinización , Reproducción , Solanum/genética
7.
BMC Cancer ; 19(1): 356, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987626

RESUMEN

BACKGROUND: Glucocorticoid receptor (GR) activation has been associated with breast cancer cell survival in vitro. Glucocorticoid (GC)-dependent protection against tumor necrosis factor (TNF)-induced cell death has been well characterized in MCF7 luminal A breast cancer cells. The GR activates a variety of protective mechanisms, such as inhibitors of apoptosis proteins (IAPs). However, the relative contribution of the GR-dependent expression of IAPs in the protection of cell death has not, to our knowledge, been evaluated. METHODS: MCF7 cells were used for all experiments. GR was activated with cortisol (CORT) or dexamethasone (DEX) and inhibited with mifepristone (RU486). Cell viability was determined in real-time with the xCELLigence™ RTCA System and at specific endpoints using crystal violet stain. The mRNA levels of the eight members of the IAP family were measured by qRT-PCR. The protein levels of GR, PR, ERα, HER2, PARP1, c-IAP1 and XIAP were evaluated by Western blot analysis. The knockdown of c-IAP1 and XIAP was accomplished via transient transfection with specific siRNAs. GR activation was verified by a gene reporter assay. Via the cBioportal interphase we queried the mRNA levels of GR and IAPs in breast cancer tumors. RESULTS: RU486 significantly inhibited the anti-cytotoxic effect of both GCs. PARP1 processing was diminished in the presence of both GCs. The combined treatments of GCs + TNF increased the relative mRNA levels of Survivin>c-IAP1 > NAIP>Apollon>XIAP>Ts-IAP > ML-IAP > c-IAP2. Additionally, GR mRNA content increased with the combined treatments of GCs + TNF. Sustained levels of the proteins c-IAP1 and XIAP were observed after 48 h of the combined treatments with GCs + TNF. With c-IAP1 and XIAP gene silencing, the GC-mediated protection was diminished. In the breast tumor samples, the GR mRNA was coexpressed with Apollon and XIAP with a Pearson coefficient greater than 0.3. CONCLUSIONS: The effect of GCs against TNF-mediated cytotoxicity involves increased mRNA expression and sustained protein levels of c-IAP1 and XIAP. The antagonist effects of RU486 and the qRT-PCR results also suggest the role of the GR in this process. This finding may have clinical implications because the GR and IAPs are expressed in breast tumor samples.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Proteínas Inhibidoras de la Apoptosis/genética , Factor de Necrosis Tumoral alfa/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Genes Reporteros , Humanos , Células MCF-7 , ARN Mensajero/genética
8.
J Inherit Metab Dis ; 42(4): 647-654, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30746739

RESUMEN

Biotin is a water-soluble vitamin that belongs to the vitamin B complex and which is an essential nutrient of all living organisms from bacteria to man. In eukaryotic cells biotin functions as a prosthetic group of enzymes, collectively known as biotin-dependent carboxylases that catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Enzyme-bound biotin acts as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In recent years, evidence has mounted that biotin also regulates gene expression through a mechanism beyond its role as a prosthetic group of carboxylases. These activities may offer a mechanistic background to a developing literature on the action of biotin in neurological disorders. This review summarizes the role of biotin in activating carboxylases and proposed mechanisms associated with a role in gene expression and in ameliorating neurological disease.


Asunto(s)
Biotina/metabolismo , Deficiencia de Biotinidasa/enzimología , Biotinidasa/metabolismo , Ligasas de Carbono-Carbono/metabolismo , Aminoácidos/metabolismo , Biotina/deficiencia , Deficiencia de Biotinidasa/genética , Regulación de la Expresión Génica , Humanos , Recién Nacido , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Deficiencia Múltiple de Carboxilasa/genética , Deficiencia Múltiple de Carboxilasa/metabolismo
9.
Annu Rev Nutr ; 37: 207-223, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28564555

RESUMEN

The vitamin biotin is an essential nutrient for the metabolism and survival of all organisms owing to its function as a cofactor of enzymes collectively known as biotin-dependent carboxylases. These enzymes use covalently attached biotin as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In human cells, biotin-dependent carboxylases catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Biotin is attached to apocarboxylases by a biotin ligase: holocarboxylase synthetase (HCS) in mammalian cells and BirA in microbes. Despite their evolutionary distance, these proteins share structural and sequence similarities, underscoring their importance across all life forms. However, beyond its role in metabolism, HCS participates in the regulation of biotin utilization and acts as a nuclear transcriptional coregulator of gene expression. In this review, we discuss the function of HCS and biotin in metabolism and human disease, a putative role for the enzyme in histone biotinylation, and its participation as a nuclear factor in chromatin dynamics. We suggest that HCS be classified as a moonlighting protein, with two biotin-dependent cytosolic metabolic roles and a distinct biotin-independent nuclear coregulatory function.


Asunto(s)
Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Biotinilación , Cromatina/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos
10.
Mol Genet Metab ; 119(4): 338-343, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27743858

RESUMEN

Annexin A6 is a multicompetent, multifunctional protein involved in several biological processes within and outside of the cell. Whereas HeLa cells express annexin A6 only as a 68/67-kDa doublet, indicating alternative splicing (Smith PD et al. (1994) Proc Natl Acad Sci USA 91, 2713-2717), the GMO2784 human fibroblast cell line expresses two additional isoforms at 64 and 58kDa. In both cell lines, annexin A6 is located intracellularly and on the plasma membrane. In vitro eukaryotic protein synthesis of pIRESneoAnxA6 cDNA and pIRESneoAnxA6/Met1- or Met33- using a reticulocyte lysate coupled transcription/translation system revealed that this gene contains two translation start codons, Met1 and Met33. Immunoprecipitation of the products obtained from the transcription/translation system using various anti-annexin A6 antibodies confirmed the presence of several isoforms and suggested that this protein might be present in different configurations.


Asunto(s)
Empalme Alternativo/genética , Anexina A6/genética , Iniciación de la Cadena Peptídica Traduccional , Isoformas de Proteínas/genética , Anexina A6/biosíntesis , Secuencia de Bases , Línea Celular , Membrana Celular , Codón Iniciador/genética , ADN Complementario , Fibroblastos , Regulación de la Expresión Génica/genética , Humanos , Isoformas de Proteínas/biosíntesis
11.
Nucleic Acids Res ; 42(11): 6885-900, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24771346

RESUMEN

The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that possesses two activating domains designated AF-1 and AF-2 that mediate its transcriptional activity. The role of AF-2 is to recruit coregulator protein complexes capable of modifying chromatin condensation status. In contrast, the mechanism responsible for the ligand-independent AF-1 activity and for its synergistic functional interaction with AF-2 is unclear. In this study, we have identified the protein Na+/H+ Exchanger RegulatoryFactor 2 (NHERF2) as an ERα-associated coactivator that interacts predominantly with the AF-1 domain of the nuclear receptor. Overexpression of NHERF2 in breast cancer MCF7 cells produced an increase in ERα transactivation. Interestingly, the presence of SRC-1 in NHERF2 stably overexpressing MCF7 cells produced a synergistic increase in ERα activity. We show further that NHERF2 interacts with ERα and SRC-1 in the promoter region of ERα target genes. The binding of NHERF2 to ERα in MCF7 cells increased cell proliferation and the ability of MCF7 cells to form tumors in a mouse model. We analyzed the expression of NHERF2 in breast cancer tumors finding a 2- to 17-fold increase in its mRNA levels in 50% of the tumor samples compared to normal breast tissue. These results indicate that NHERF2 is a coactivator of ERα that may participate in the development of estrogen-dependent breast cancer tumors.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/metabolismo , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Activación Transcripcional , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Proliferación Celular , Estradiol/farmacología , Receptor alfa de Estrógeno/análisis , Receptor alfa de Estrógeno/química , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Coactivador 1 de Receptor Nuclear/metabolismo , Fosfoproteínas/análisis , Fosfoproteínas/genética , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Intercambiadores de Sodio-Hidrógeno/análisis , Intercambiadores de Sodio-Hidrógeno/genética , Factor Trefoil-1 , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
12.
J Biol Chem ; 289(22): 15554-65, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24737323

RESUMEN

Estrogen receptor α (ERα) mediates the effects of 17ß-estradiol (E2) in normal mammary gland, and it is a key participant in breast cancer tumor development. ERα transactivation activity is mediated by the synergistic interaction of two domains designated AF1 and AF2. The function of AF2 is to recruit coactivator and corepressor proteins that allow ERα to oscillate between the roles of transcriptional activator and repressor. In contrast, the mechanism responsible for AF-1 transcriptional activity is not completely understood. In this study, we identified tristetraproline (TTP) as a novel ERα-associated protein. TTP expression in MCF7 cells repressed ERα transactivation and reduced MCF7 cell proliferation and the ability of the cells to form tumors in a mouse model. We show that TTP transcriptional activity is mediated through its recruitment to the promoter region of ERα target genes and its interaction with histone deacetylases, in particular with HDAC1. TTP expression attenuates the coactivating activity of SRC-1, suggesting that exchange between TTP and other coactivators may play an important role in fine-tuning ERα transactivation. These results indicate that TTP acts as a bona fide ERα corepressor and suggest that this protein may be a contributing factor in the development of E2-dependent tumors in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/metabolismo , Tristetraprolina/metabolismo , Animales , Neoplasias de la Mama/genética , Proliferación Celular , Proteínas Co-Represoras/metabolismo , Estradiol/metabolismo , Estradiol/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Histona Desacetilasas/metabolismo , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Transcripción Genética/fisiología
13.
Mol Genet Metab ; 111(3): 321-330, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24239178

RESUMEN

In human cells, HCS catalyzes the biotinylation of biotin-dependent carboxylases and mediates the transcriptional control of genes involved in biotin metabolism through the activation of a cGMP-dependent signal transduction pathway. HCS also targets to the cell nucleus in association with lamin-B suggesting additional gene regulatory functions. Studies from our laboratory in Drosophila melanogaster showed that nuclear HCS is associated with heterochromatin bands enriched with the transcriptionally repressive mark histone 3 trimethylated at lysine 9. Further, HCS was shown to be recruited to the core promoter of the transcriptionally inactive hsp70 gene suggesting that it may participate in the repression of gene expression, although the mechanism involved remained elusive. In this work, we expressed HCS as a fusion protein with the DNA-binding domain of GAL4 to evaluate its effect on the transcription of a luciferase reporter gene. We show that HCS possesses transcriptional repressor activity in HepG2 cells. The transcriptional function of HCS was shown by in vitro pull down and in vivo co-immunoprecipitation assays to depend on its interaction with the histone deacetylases HDAC1, HDAC2 and HDAC7. We show further that HCS interaction with HDACs and its function in transcriptional repression is not affected by mutations impairing its biotin-ligase activity. We propose that nuclear HCS mediates events of transcriptional repression through a biotin-independent mechanism that involves its interaction with chromatin-modifying protein complexes that include histone deacetylases.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Histona Desacetilasas/genética , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Cromatina , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Células Hep G2 , Heterocromatina/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética
14.
Front Plant Sci ; 15: 1358565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504883

RESUMEN

This breeding project, initiated at the United States Potato Genebank (USPG) in collaboration with Peruvian partners Instituto Nacional de Innovacion Agraria (INIA), International Potato Center, Peru (CIP), and local farmers, sought to enhance cold hardiness and frost tolerance in native potato cultivars in Peru. The Andes and Altiplano are often affected by frost, which causes significant reduction in yield; creating varieties with superior resilience is a critical undertaking. The goal was to transfer outstanding non-acclimated cold tolerance and acclimation capacity found in wild potato species Solanum commersonii (cmm). Breeding families segregating for cold hardiness were created using (a) a somatic hybrid cmm + haploid Solanum tuberosum (tbr) (cv. Superior, US variety from Wisconsin) as male and (b) seven cultivars native to Peru of the species S. tuberosum sbsp. andigenum (adg) as females. All plant materials were part of the USPG germplasm collection. Sexual seeds of each family were sent to Peru for evaluations under the natural conditions of the Andean highlands and Altiplano. The plants were assessed for their response to frost, and genotypes showing exceptional tolerance were selected. Plants were also evaluated for good tuber traits and yield. Initial planting involving ~2,500 seedlings in five locations resulted in selecting 58 genotypes with exceptional frost tolerance, good recovery capacity after frost, and good tuber traits. Over the years, evaluations continued and were expanded to replicated field trials in the harsher conditions of the Altiplano (Puno). All trials confirmed consistency of frost tolerance over time and location, tuber quality, and yield. After 8 years, two advanced clones were considered for cultivar release because of their exceptional frost tolerance and superior field productivity that outyielded many of the established cultivars in the region. In November 2018, a new native cultivar named Wiñay, a Quechua word meaning "to grow" was released in Peru. In 2022, a second cultivar followed with the name Llapanchispaq (meaning "for all of us"). This project evidenced that a multinational and all-encompassing approach to deploy valuable genetic diversity can work and deliver effective results. This is even more significant when outcomes can promote food security and sustainability in very vulnerable regions of the world.

15.
Exp Cell Res ; 317(16): 2364-73, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21672540

RESUMEN

Endocytosis and transport of bovine liver ß-glucuronidase to lysosomes in human fibroblasts are mediated by two receptors: the well-characterized cation-independent mannose 6-phosphate receptor (IGF-II/Man6PR) and an IGF-II/Man6PR-independent receptor, which recognizes a Ser-Trp*-Ser sequence present on the ligand. The latter receptor was detergent extracted from bovine liver membranes and purified. LC/ESI-MS/MS analysis revealed that this endocytic receptor was annexin VI (AnxA6). Several approaches were used to confirm this finding. First, the binding of bovine ß-glucuronidase to the purified receptor from bovine liver membranes and His-tagged recombinant human AnxA6 protein was confirmed using ligand-blotting assays. Second, western blot analysis using antibodies raised against IGF-II/Man6PR-independent receptor as well as commercial antibodies against AnxA6 confirmed that the receptor and AnxA6 were indeed the same protein. Third, double immunofluorescence experiments in human fibroblasts confirmed a complete colocalization of the bovine ß-glucuronidase and the AnxA6 receptor on the plasma membrane. Lastly, two cell lines were stably transfected with a plasmid containing the cDNA for human AnxA6. In both transfected cell lines, an increase in cell surface AnxA6 and in mannose 6-phosphate-independent endocytosis of bovine ß-glucuronidase was detected. These results indicate that AnxA6 is a novel receptor that mediates the endocytosis of the bovine ß-glucuronidase.


Asunto(s)
Anexina A6/fisiología , Endocitosis/fisiología , Glucuronidasa/metabolismo , Receptor IGF Tipo 2/fisiología , Receptores de Superficie Celular/fisiología , Animales , Anexina A6/análisis , Anexina A6/aislamiento & purificación , Anticuerpos/inmunología , Anticuerpos/farmacología , Bovinos , Línea Celular Tumoral , Endocitosis/efectos de los fármacos , Células Epiteliales/fisiología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Humanos , Células L , Hígado/química , Hígado/enzimología , Manosafosfatos/farmacología , Espectrometría de Masas , Ratones , Unión Proteica/fisiología , Receptores de Superficie Celular/análisis , Receptores de Superficie Celular/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Transfección , Vesículas Transportadoras/metabolismo
16.
Mol Genet Metab ; 103(3): 240-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21463962

RESUMEN

This work examines the cellular localization of holocarboxylase synthetase (HCS) and its association to chromatin during different stages of development of Drosophila melanogaster. While HCS is well known for its role in the attachment of biotin to biotin-dependent carboxylase, it also regulates the transcription of HCS and carboxylases genes by triggering a cGMP-dependent signal transduction cascade. Further, its presence in the nucleus of cells suggests additional regulatory roles, but the mechanism involved has remained elusive. In this study, we show in D. melanogaster that HCS migrates to the nucleus at the gastrulation stage. In polytene chromosomes, it is associated to heterochromatin bands where it co-localizes with histone 3 trimethylated at lysine 9 (H3K9met3) but not with the euchromatin mark histone 3 acetylated at lysine 9 (H3K9ac). Further, we demonstrate the association of HCS with the hsp70 promoter by immunofluorescence and chromatin immuno-precipitation (ChIP) of associated DNA sequences. We demonstrate the occupancy of HCS to the core promoter region of the transcriptionally inactive hsp70 gene. On heat-shock activation of the hsp70 promoter, HCS is displaced and the promoter region becomes enriched with the TFIIH subunits XPD and XPB and elongating RNA pol II, the latter also demonstrated using ChIP assays. We suggest that HCS may have a role in the repression of gene expression through a mechanism involving its trafficking to the nucleus and interaction with heterochromatic sites coincident with H3K9met3.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Cromatina/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/enzimología , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Núcleo Celular/enzimología , Drosophila melanogaster/genética , Proteínas del Choque Térmico HSP72/genética , Células Hep G2 , Histonas/metabolismo , Calor , Humanos , Datos de Secuencia Molecular , Cromosomas Politénicos/genética , Cromosomas Politénicos/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Transporte de Proteínas , Alineación de Secuencia
17.
Front Cell Dev Biol ; 9: 759259, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111748

RESUMEN

p21-Activated kinase-1 (Pak1) is frequently overexpressed and/or amplified in human breast cancer and is necessary for transformation of mammary epithelial cells. Here, we show that Pak1 interacts with and phosphorylates the Calcium/Calmodulin-dependent Protein Kinase II (CaMKII), and that pharmacological inhibition or depletion of Pak1 leads to diminished activity of CaMKII. We found a strong correlation between Pak1 and CaMKII expression in human breast cancer samples, and combined inhibition of Pak1 and CaMKII with small-molecule inhibitors was synergistic and induced apoptosis more potently in Her2 positive and triple negative breast cancer (TNBC) cells. Co-adminstration of Pak and CaMKII small-molecule inhibitors resulted in a dramatic reduction of proliferation and an increase in apoptosis in a 3D cell culture setting, as well as an impairment in migration and invasion of TNBC cells. Finally, mice bearing xenografts of TNBC cells showed a significant delay in tumor growth when treated with small-molecule inhibitors of Pak and CaMKII. These data delineate a signaling pathway from Pak1 to CaMKII that is required for efficient proliferation, migration and invasion of mammary epithelial cells, and suggest new therapeutic strategies in breast cancer.

18.
Front Endocrinol (Lausanne) ; 11: 568375, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117284

RESUMEN

The estrogen receptor alpha (ERα) is a ligand-activated transcription factor whose activity is modulated by its interaction with multiple protein complexes. In this work, we have identified the protein interferon alpha inducible protein 27 (IFI27/ISG12) as a novel ERα-associated protein. IFI27/ISG12 transcription is regulated by interferon and estradiol and its overexpression is associated to reduced overall survival in ER+ breast cancer patients but its function in mammary gland tissue remains elusive. In this study we showed that overexpression of IFI27/ISG12 in breast cancer cells attenuates ERα transactivation activity and the expression of ERα-dependent genes. Our results demonstrated that IFI27/ISG12 overexpression in MCF-7 cells reduced their proliferation rate in 2-D and 3-D cell culture assays and impaired their ability to migrate in a wound-healing assay. We show that IFI27/ISG12 downregulation of ERα transactivation activity is mediated by its ability to facilitate the interaction between ERα and CRM1/XPO1 that mediates the nuclear export of large macromolecules to the cytoplasm. IFI27/ISG12 overexpression was shown to impair the estradiol-dependent proliferation and tamoxifen-induced apoptosis in breast cancer cells. Our results suggest that IFI27/ISG12 may be an important factor in regulating ERα activity in breast cancer cells by modifying its nuclear versus cytoplasmic protein levels. We propose that IFI27/ISG12 may be a potential target of future strategies to control the growth and proliferation of ERα-positive breast cancer tumors.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación hacia Abajo/fisiología , Receptor alfa de Estrógeno/biosíntesis , Carioferinas/biosíntesis , Proteínas de la Membrana/biosíntesis , Receptores Citoplasmáticos y Nucleares/biosíntesis , Activación Transcripcional/fisiología , Neoplasias de la Mama/genética , Bases de Datos Genéticas , Regulación hacia Abajo/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Carioferinas/genética , Células MCF-7 , Proteínas de la Membrana/genética , Receptores Citoplasmáticos y Nucleares/genética , Tamoxifeno/farmacología , Activación Transcripcional/efectos de los fármacos , Proteína Exportina 1
19.
Am J Cardiovasc Drugs ; 9 Suppl 1: 13-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20000883

RESUMEN

The incidence of new coronary events in patients receiving dual antiplatelet therapy (e.g. cyclo-oxygenase inhibitors such as aspirin [acetylsalicylic acid; ASA]) and ADP receptor blockers (e.g. clopidogrel) is high. Therefore, it is critical to identify patients who require more intense treatment such as those with poor tolerance to existing drugs, those with genotypes that predict treatment resistance, diabetic patients, and smokers. The new ADP receptor blockers (prasugrel, cangrelor, Ticagrelor) can provide greater efficacy but it should not be associated with increased bleeding. Thrombin receptor antagonists (e.g. SCH530348) are another alternative that is currently being tested in randomized trials.


Asunto(s)
Síndrome Coronario Agudo/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Adenosina/análogos & derivados , Adenosina/uso terapéutico , Adenosina Difosfato/antagonistas & inhibidores , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Clopidogrel , Humanos , Lactonas/uso terapéutico , Piperazinas/uso terapéutico , Guías de Práctica Clínica como Asunto , Clorhidrato de Prasugrel , Piridinas/uso terapéutico , Tiofenos/uso terapéutico , Ticagrelor , Ticlopidina/análogos & derivados , Ticlopidina/uso terapéutico
20.
Mol Genet Metab ; 95(4): 213-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18824381

RESUMEN

The tricarboxylic acid (TCA) cycle is the main ATP provider for the heart. TCA carbons must be replenished by anaplerosis for normal cardiac function. Biotin is cofactor of the anaplerotic enzymes pyruvate and propionyl-CoA carboxylases. Here, we found that in biotin deficient rats, both carboxylases decreased 90% in adipose tissue, jejunum and spleen, but in heart they conserved about 60% residual activity. We then investigated if under biotin deficiency (BtDEF), the heart is able to maintain its function in vivo and in isolated conditions, and during ischemia and reperfusion, where metabolism drastically shifts from oxidative to mainly glycolytic. Neither glucose nor octanoate oxidation were severely affected in BtDEF hearts, as assessed by mechanical performance, oxygen uptake or high-energy metabolite content; however, myocardial hexokinase activity and lactate concentration were reduced in deficient hearts. When challenged by ischemia and reperfusion injury, BtDEF hearts did not suffer more damage than the controls, although they lowered significantly their performance, when changed to ischemic conditions, which may have clinical implications. Post-ischemic increase in ADP/ATP ratio was similar in both groups, but during reperfusion there was higher rhythm perturbation in BtDEF hearts. By being relatively insensitive to biotin deficiency, cardiac tissue seems to be able to replenish TCA cycle intermediates and to maintain ATP synthesis.


Asunto(s)
Biotina/deficiencia , Corazón/fisiopatología , Miocardio/metabolismo , Animales , Humanos , Técnicas In Vitro , Masculino , Metilmalonil-CoA Descarboxilasa/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatología , Miocardio/enzimología , Piruvato Carboxilasa/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA