Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(7): 3806-3815, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31996904

RESUMEN

Cap homeostasis is the cyclical process of decapping and recapping that maintains the translation and stability of a subset of the transcriptome. Previous work showed levels of some recapping targets decline following transient expression of an inactive form of RNMT (ΔN-RNMT), likely due to degradation of mRNAs with improperly methylated caps. The current study examined transcriptome-wide changes following inhibition of cytoplasmic cap methylation. This identified mRNAs with 5'-terminal oligopyrimidine (TOP) sequences as the largest single class of recapping targets. Cap end mapping of several TOP mRNAs identified recapping events at native 5' ends and downstream of the TOP sequence of EIF3K and EIF3D. This provides the first direct evidence for downstream recapping. Inhibition of cytoplasmic cap methylation was also associated with mRNA abundance increases for a number of transcription, splicing, and 3' processing factors. Previous work suggested a role for alternative polyadenylation in target selection, but this proved not to be the case. However, inhibition of cytoplasmic cap methylation resulted in a shift of upstream polyadenylation sites to annotated 3' ends. Together, these results solidify cap homeostasis as a fundamental process of gene expression control and show cytoplasmic recapping can impact regulatory elements present at the ends of mRNA molecules.


Asunto(s)
Secuencia de Oligopirimidina en la Región 5' Terminal del ARN , Caperuzas de ARN/metabolismo , ARN Mensajero/química , Secuencias Reguladoras de Ácido Ribonucleico , Línea Celular Tumoral , Citoplasma , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Humanos , Metilación , Poliadenilación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Genes (Basel) ; 14(5)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37239435

RESUMEN

miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Metilación de ADN/genética , Neoplasias/genética , Epigénesis Genética/genética , Silenciador del Gen
3.
Oncogene ; 42(19): 1597-1606, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37002315

RESUMEN

Non-small cell lung cancer (NSCLC) patients carrying an epidermal growth factor receptor (EGFR) mutation have an initial favorable clinical response to the tyrosine kinase inhibitors (TKIs). Unfortunately, rapid resistance occurs mainly because of genetic alterations, including amplification of the hepatocyte growth factor receptor (MET) and its abnormal activity. The RNA post-transcriptional modifications that contribute to aberrant expression of MET in cancer are largely under-investigated and among them is the adenosine-to-inosine (A-to-I) RNA editing of microRNAs. A reduction of A-to-I editing in position 5 of miR-411-5p has been identified in several cancers, including NSCLC. In this study, thanks to cancer-associated gene expression analysis, we assessed the effect of the edited miR-411-5p on NSCLC cell lines. We found that edited miR-411-5p directly targets MET and negatively affects the mitogen-activated protein kinases (MAPKs) pathway. Considering the predominant role of the MAPKs pathway on TKIs resistance, we generated NSCLC EGFR mutated cell lines resistant to TK inhibitors and evaluated the effect of edited miR-411-5p overexpression. We found that the edited miR-411-5p reduces proliferation and induces apoptosis, promoting EGFR TKIs response in NSCLC-resistant cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
4.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38045284

RESUMEN

The 5' cap, catalyzed by RNA guanylyltransferase and 5'-phosphatase (RNGTT), is a vital mRNA modification for the functionality of mRNAs. mRNA capping occurs in the nucleus for the maturation of the functional mRNA and in the cytoplasm for fine-tuning gene expression. Given the fundamental importance of RNGTT in mRNA maturation and expression there is a need to further investigate the regulation of RNGTT. N6-methyladenosine (m6A) is one of the most abundant RNA modifications involved in the regulation of protein translation, mRNA stability, splicing, and export. We sought to investigate whether m6A could regulate the expression and activity of RNGTT. A motif for the m6A writer methyltransferase 3 (METTL3) in the 3'UTR of RNGTT mRNA was identified. Knockdown of METTL3 resulted in destabilizing RNGTT mRNA, and reduced protein expression. Sequencing of capped mRNAs identified an underrepresentation of ribosomal protein mRNA overlapping with 5' terminal oligopyrimidine (TOP) mRNAs and genes are dysregulated when cytoplasmic capping is inhibited. Pathway analysis identified disruptions in the mTOR and p70S6K pathways. A reduction in RPS6 mRNA capping, protein expression, and phosphorylation was detected with METTL3 knockdown.

5.
Genes (Basel) ; 13(7)2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35886072

RESUMEN

The epitranscriptome encompasses all post-transcriptional modifications that occur on RNAs. These modifications can alter the function and regulation of their RNA targets, which, if dysregulated, result in various diseases and cancers. As with other RNAs, miRNAs are highly modified by epitranscriptomic modifications such as m6A methylation, 2'-O-methylation, m5C methylation, m7G methylation, polyuridine, and A-to-I editing. miRNAs are a class of small non-coding RNAs that regulates gene expression at the post-transcriptional level. miRNAs have gathered high clinical interest due to their role in disease, development, and cancer progression. Epitranscriptomic modifications alter the targeting, regulation, and biogenesis of miRNAs, increasing the complexity of miRNA regulation. In addition, emerging studies have revealed crosstalk between these modifications. In this review, we will summarize the epitranscriptomic modifications-focusing on those relevant to miRNAs-examine the recent crosstalk between these modifications, and give a perspective on how this crosstalk expands the complexity of miRNA biology.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Metilación , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Procesamiento Postranscripcional del ARN/genética
6.
Bio Protoc ; 10(20): e3791, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659445

RESUMEN

The 5' cap is a ubiquitous feature of eukaryotic mRNAs. It is added in the nucleus onto newly synthesized pre-mRNA, and in the cytoplasm onto mRNAs after decapping or endonuclease cleavage. Cytoplasmic recapping can occur after loss of the cap at the native 5' end, or downstream within the body of the mRNA. The identification and location of recapping events is key to understanding the functional consequences of this process. Here we present an approach that addresses this problem, using the Lexogen TeloPrime® cDNA synthesis kit to tag recapped 5' ends. TeloPrime uses a proprietary DNA ligase to add a double stranded DNA oligonucleotide onto the 3' end of cDNA while it is base paired with mRNA. Specificity for capped ends is obtained by the oligonucleotide having an unpaired C residue that base pairs weakly with m7G on the mRNA 5' end. This is followed by PCR amplification of double-stranded cDNA using primers to the appended oligonucleotide and the mRNA of interest. The resulting products are gel purified and sequenced directly (if a single band) or cloned and sequenced. The sequence at the junction between the ligated oligonucleotide and the target mRNA provides the location of the cap on the corresponding transcript. This assay is applicable to all capped transcripts. It can be used with Sanger sequencing for small numbers of transcripts or adapted for use with Illumina library sequencing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA