Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 50(3-4): 283-92, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22728723

RESUMEN

MicroRNAs (miRNAs) are critical regulators of nervous system function, and in vivo knockout studies have demonstrated that miRNAs are necessary for multiple aspects of neuronal development and survival. However, the role of miRNA biogenesis in the formation and function of synapses in the cerebral cortex is only minimally understood. Here, we have generated and characterized a mouse line with a conditional neuronal deletion of Dgcr8, a miRNA biogenesis protein predicted to process miRNAs exclusively. Loss of Dgcr8 in pyramidal neurons of the cortex results in a non-cell-autonomous reduction in parvalbumin interneurons in the prefrontal cortex, accompanied by a severe deficit in inhibitory synaptic transmission and a corresponding reduction of inhibitory synapses. Together, these results suggest a vital role for miRNAs in governing essential aspects of inhibitory transmission and interneuron development in the mammalian nervous system. These results may be relevant to human diseases such as schizophrenia, where both altered Dgcr8 levels as well as aberrant inhibitory transmission in the prefrontal cortex have been postulated to contribute to the pathophysiology of the disease.


Asunto(s)
Potenciales Postsinápticos Inhibidores/genética , MicroARNs/metabolismo , Corteza Prefrontal/fisiología , Proteínas/genética , Células Piramidales/fisiología , Animales , Encéfalo/anomalías , Tamaño de la Célula , Eliminación de Gen , Interneuronas/metabolismo , Ratones , Ratones Noqueados , MicroARNs/genética , Pilocarpina/farmacología , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Proteínas/metabolismo , Células Piramidales/metabolismo , Proteínas de Unión al ARN , Convulsiones/inducido químicamente
2.
Neuron ; 71(2): 235-42, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21791283

RESUMEN

A hallmark of mammalian neural circuit development is the refinement of initially imprecise connections by competitive activity-dependent processes. In the developing visual system retinal ganglion cell (RGC) axons from the two eyes undergo activity-dependent competition for territory in the dorsal lateral geniculate nucleus (dLGN). The direct contributions of synaptic transmission to this process, however, remain unclear. We used a genetic approach to reduce glutamate release selectively from ipsilateral-projecting RGCs and found that their release-deficient axons failed to exclude competing axons from the ipsilateral eye territory in the dLGN. Nevertheless, the release-deficient axons consolidated and maintained their normal amount of dLGN territory, even in the face of fully active competing axons. These results show that during visual circuit refinement glutamatergic transmission plays a direct role in excluding competing axons from inappropriate target regions, but they argue that consolidation and maintenance of axonal territory are largely insensitive to alterations in synaptic activity levels.


Asunto(s)
Ácido Glutámico/metabolismo , Retina/citología , Células Ganglionares de la Retina/fisiología , Vías Visuales/crecimiento & desarrollo , Factores de Edad , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Biofisica/métodos , Células Cultivadas , Toxina del Cólera/metabolismo , Estimulación Eléctrica/métodos , Lateralidad Funcional , Cuerpos Geniculados/fisiología , Ácido Glutámico/genética , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Ratones , Ratones Mutantes , Estadísticas no Paramétricas , Transmisión Sináptica/genética , Proteína 2 de Transporte Vesicular de Glutamato/deficiencia , Proteína 2 de Transporte Vesicular de Glutamato/genética , Vías Visuales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA