Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(2): 486-498, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725413

RESUMEN

Cyclin-dependent kinase 5 regulates numerous neuronal functions with its activator, p35. Under neurotoxic conditions, p35 undergoes proteolytic cleavage to liberate p25, which has been implicated in various neurodegenerative diseases. Here, we show that p25 is generated following neuronal activity under physiological conditions in a GluN2B- and CaMKIIα-dependent manner. Moreover, we developed a knockin mouse model in which endogenous p35 is replaced with a calpain-resistant mutant p35 (Δp35KI) to prevent p25 generation. The Δp35KI mice exhibit impaired long-term depression and defective memory extinction, likely mediated through persistent GluA1 phosphorylation at Ser845. Finally, crossing the Δp35KI mice with the 5XFAD mouse model of Alzheimer's disease (AD) resulted in an amelioration of ß-amyloid (Aß)-induced synaptic depression and cognitive impairment. Together, these results reveal a physiological role of p25 production in synaptic plasticity and memory and provide new insights into the function of p25 in Aß-associated neurotoxicity and AD-like pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Calpaína/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cognición , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Endocitosis , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Ratones , Proteínas del Tejido Nervioso/genética , Fosfotransferasas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis
2.
EMBO J ; 43(8): 1420-1444, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528182

RESUMEN

Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.


Asunto(s)
MicroARNs , Esquizofrenia , Animales , Humanos , Ratones , Microglía/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Esquizofrenia/genética
3.
Proc Natl Acad Sci U S A ; 120(9): e2204933120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812208

RESUMEN

N6-methyladenosine (m6A) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of m6A in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the m6A epitranscriptome of the hippocampal subregions CA1, CA3, and the dentate gyrus and the anterior cingulate cortex (ACC) in young and aged mice. We observed a decrease in m6A levels in aged animals. Comparative analysis of cingulate cortex (CC) brain tissue from cognitively intact human subjects and Alzheimer's disease (AD) patients showed decreased m6A RNA methylation in AD patients. m6A changes common to brains of aged mice and AD patients were found in transcripts linked to synaptic function including calcium/calmodulin-dependent protein kinase 2 (CAMKII) and AMPA-selective glutamate receptor 1 (Glua1). We used proximity ligation assays to show that reduced m6A levels result in decreased synaptic protein synthesis as exemplified by CAMKII and GLUA1. Moreover, reduced m6A levels impaired synaptic function. Our results suggest that m6A RNA methylation controls synaptic protein synthesis and may play a role in cognitive decline associated with aging and AD.


Asunto(s)
Enfermedad de Alzheimer , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Humanos , Ratones , Animales , Anciano , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo , Envejecimiento/metabolismo , ARN/metabolismo , Mamíferos/genética
4.
Acta Neuropathol ; 147(1): 45, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407651

RESUMEN

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease caused by repetitive head impacts (RHI) and pathologically defined as neuronal phosphorylated tau aggregates around small blood vessels and concentrated at sulcal depths. Cross-sectional studies suggest that tau inclusions follow a stereotyped pattern that begins in the neocortex in low stage disease, followed by involvement of the medial temporal lobe and subcortical regions with significant neocortical burden in high stage CTE. Here, we define a subset of brain donors with high stage CTE and with a low overall cortical burden of tau inclusions (mean semiquantitative value ≤1) and classify them as cortical-sparing CTE (CSCTE). Of 620 brain donors with pathologically diagnosed CTE, 66 (11%) met criteria for CSCTE. Compared to typical high stage CTE, those with CSCTE had a similar age at death and years of contact sports participation and were less likely to carry apolipoprotein ε4 (p < 0.05). CSCTE had less overall tau pathology severity, but a proportional increase of disease burden in medial temporal lobe and brainstem regions compared to the neocortex (p's < 0.001). CSCTE also had lower prevalence of comorbid neurodegenerative disease. Clinically, CSCTE participants were less likely to have dementia (p =  0.023) and had less severe cognitive difficulties (as reported by informants using the Functional Activities Questionnaire (FAQ); p < 0.001, meta-cognitional index T score; p = 0.002 and Cognitive Difficulties Scale (CDS); p < 0.001,) but had an earlier onset age of behavioral (p = 0.006) and Parkinsonian motor (p = 0.013) symptoms when compared to typical high stage CTE. Other comorbid tauopathies likely contributed in part to these differences: when cases with concurrent Alzheimer dementia or frontal temporal lobar degeneration with tau pathology were excluded, differences were largely retained, but only remained significant for FAQ (p = 0.042), meta-cognition index T score (p = 0.014) and age of Parkinsonian motor symptom onset (p = 0.046). Overall, CSCTE appears to be a distinct subtype of high stage CTE with relatively greater involvement of subcortical and brainstem regions and less severe cognitive symptoms.


Asunto(s)
Enfermedad de Alzheimer , Encefalopatía Traumática Crónica , Enfermedades Neurodegenerativas , Humanos , Estudios Transversales , Encéfalo
5.
Eur Arch Psychiatry Clin Neurosci ; 273(6): 1279-1293, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36302978

RESUMEN

Over the last few years, extracellular vesicles (EVs) have received increasing attention as potential non-invasive diagnostic and therapeutic biomarkers for various diseases. The interest in EVs is related to their structure and content, as well as to their changing cargo in response to different stimuli. One of the potential areas of use of EVs as biomarkers is the central nervous system (CNS), in particular the brain, because EVs can cross the blood-brain barrier, exist also in peripheral tissues and have a diverse cargo. Thus, they may represent "liquid biopsies" of the CNS that can reflect brain pathophysiology without the need for invasive surgical procedures. Overall, few studies to date have examined EVs in neuropsychiatric disorders, and the present evidence appears to lack reproducibility. This situation might be due to a variety of technical obstacles related to working with EVs, such as the use of different isolation strategies, which results in non-uniform vesicular and molecular outputs. Multi-omics approaches and improvements in the standardization of isolation procedures will allow highly pure EV fractions to be obtained in which the molecular cargo, particularly microRNAs and proteins, can be identified and accurately quantified. Eventually, these advances will enable researchers to decipher disease-relevant molecular signatures of the brain-derived EVs involved in synaptic plasticity, neuronal development, neuro-immune communication, and other related pathways. This narrative review summarizes the findings of studies on EVs in major psychiatric disorders, particularly in the field of biomarkers, and discusses the respective therapeutic potential of EVs.


Asunto(s)
Vesículas Extracelulares , Trastornos Mentales , Humanos , Reproducibilidad de los Resultados , Vesículas Extracelulares/metabolismo , Encéfalo , Biomarcadores/metabolismo , Trastornos Mentales/diagnóstico , Trastornos Mentales/terapia , Trastornos Mentales/metabolismo
6.
EMBO J ; 36(19): 2815-2828, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28768717

RESUMEN

Age-associated memory decline is due to variable combinations of genetic and environmental risk factors. How these risk factors interact to drive disease onset is currently unknown. Here we begin to elucidate the mechanisms by which post-traumatic stress disorder (PTSD) at a young age contributes to an increased risk to develop dementia at old age. We show that the actin nucleator Formin 2 (Fmn2) is deregulated in PTSD and in Alzheimer's disease (AD) patients. Young mice lacking the Fmn2 gene exhibit PTSD-like phenotypes and corresponding impairments of synaptic plasticity, while the consolidation of new memories is unaffected. However, Fmn2 mutant mice develop accelerated age-associated memory decline that is further increased in the presence of additional risk factors and is mechanistically linked to a loss of transcriptional homeostasis. In conclusion, our data present a new approach to explore the connection between AD risk factors across life span and provide mechanistic insight to the processes by which neuropsychiatric diseases at a young age affect the risk for developing dementia.


Asunto(s)
Demencia/genética , Proteínas de Microfilamentos/genética , Proteínas Nucleares/genética , Adulto , Edad de Inicio , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Estudios de Casos y Controles , Demencia/epidemiología , Demencia/psicología , Forminas , Humanos , Masculino , Memoria/fisiología , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proteínas del Tejido Nervioso , Plasticidad Neuronal/genética , Fenotipo , Factores de Riesgo , Trastornos por Estrés Postraumático/complicaciones , Trastornos por Estrés Postraumático/epidemiología , Trastornos por Estrés Postraumático/genética
7.
Psychiatr Danub ; 33(Suppl 4): 451-455, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34718264

RESUMEN

Bipolar disorder (BD) is a common, recurring psychiatric illness with unknown pathogenesis. Much like other psychiatric diseases, BD suffers from the chronic lack of reliable biomarkers and innovative pharmacological interventions. Better characterization of clinical profiles, experimental medicine, genomic data mining, and the utilization of experimental models, including stem cell and genetically modified mice, are suggested ways forward. Environment, including early childhood experiences, has been documented to modulate the risk for the development of psychiatric disorders via epigenetic mechanisms. Key epigenetic regulators, microRNAs (miRNAs, miRs), govern normal neuronal functioning and show altered expression in diverse brain pathologies. We observed significant alterations of exosomal miR-29c levels in prefrontal cortex (Brodmann area 9, BA9) of BD patients. We also demonstrated that exosomes extracted from the anterior cingulate cortex (BA24), a crucial area for modulating emotional expression and affect, have increased levels of miR-149 in BD patients compared to controls. Because miR-149 has been shown to inhibit glial proliferation, we hypothesized that increased miR-149 expression in BA24-derived exosomes may be consistent with the previously reported reduced glial cell numbers in BA24 of patients diagnosed with familial BD. qPCR analysis of laser-microdissected neuronal and glial cells from BA24 cortical samples of BD patients verified that the glial, but not neuronal, population exhibits significantly increased miR-149 expression. These findings support neuron-glia interaction as a possible target mechanism in BD, implicated by others in neuroimaging, postmortem, and in vivo studies of the pathological changes mediated by glial cells.


Asunto(s)
Trastorno Bipolar , MicroARNs , Animales , Biomarcadores , Trastorno Bipolar/genética , Preescolar , Humanos , Ratones , MicroARNs/genética , Neuronas , Corteza Prefrontal
8.
Proc Natl Acad Sci U S A ; 114(23): E4686-E4694, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533418

RESUMEN

Schizophrenia is a devastating disease that arises on the background of genetic predisposition and environmental risk factors, such as early life stress (ELS). In this study, we show that ELS-induced schizophrenia-like phenotypes in mice correlate with a widespread increase of histone-deacetylase 1 (Hdac1) expression that is linked to altered DNA methylation. Hdac1 overexpression in neurons of the medial prefrontal cortex, but not in the dorsal or ventral hippocampus, mimics schizophrenia-like phenotypes induced by ELS. Systemic administration of an HDAC inhibitor rescues the detrimental effects of ELS when applied after the manifestation of disease phenotypes. In addition to the hippocampus and prefrontal cortex, mice subjected to ELS exhibit increased Hdac1 expression in blood. Moreover, Hdac1 levels are increased in blood samples from patients with schizophrenia who had encountered ELS, compared with patients without ELS experience. Our data suggest that HDAC1 inhibition should be considered as a therapeutic approach to treat schizophrenia.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Esquizofrenia/enzimología , Estrés Psicológico/enzimología , Adulto , Anciano , Animales , Metilación de ADN , Femenino , Hipocampo/enzimología , Histona Desacetilasa 1/sangre , Histona Desacetilasa 1/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Persona de Mediana Edad , Fenotipo , Corteza Prefrontal/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esquizofrenia/etiología , Esquizofrenia/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/genética , Adulto Joven
9.
Nature ; 483(7388): 222-6, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22388814

RESUMEN

Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer's disease. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer's-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer's disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade.


Asunto(s)
Encéfalo/fisiopatología , Epigénesis Genética , Histona Desacetilasa 2/genética , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Acetilación/efectos de los fármacos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Histona Desacetilasa 2/deficiencia , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Trastornos de la Memoria/complicaciones , Ratones , Enfermedades Neurodegenerativas/complicaciones , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Fragmentos de Péptidos/toxicidad , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Receptores de Glucocorticoides/metabolismo
10.
Am J Med Genet B Neuropsychiatr Genet ; 174(3): 315-323, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28190298

RESUMEN

Bipolar disorder (BD) is a common, recurring psychiatric illness with unknown pathogenesis. Recent studies suggest that microRNA (miRNA) levels in brains of BD patients are significantly altered, and these changes may offer insight into BD pathology or etiology. Previously, we observed significant alterations of miR-29c levels in extracellular vesicles (EVs) extracted from prefrontal cortex (Brodmann area 9, BA9) of BD patients. In this study, we show that EVs extracted from the anterior cingulate cortex (BA24), a crucial area for modulating emotional expression and affect, have increased levels of miR-149 in BD patients compared to controls. Because miR-149 has been shown to inhibit glial proliferation, increased miR-149 expression in BA24-derived EVs is consistent with the previously reported reduced glial cell numbers in BA24 of patients diagnosed with either familial BD or familial major depressive disorder. qPCR analysis of laser-microdissected neuronal and glial cells from BA24 cortical samples of BD patients verified that the glial, but not neuronal, population exhibits significantly increased miR-149 expression. Finally, we report altered expression of both miR-149 and miR-29c in EVs extracted from brains of Flinders Sensitive Line rats, a well-validated animal model exhibiting depressive-like behaviors and glial (astrocytic) dysfunction. These findings warrant future investigations into the potential of using EV miRNA signatures as biomarkers to further enhance the biological definition of BD. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Trastorno Bipolar/diagnóstico , Trastorno Bipolar/genética , MicroARNs/genética , Animales , Biomarcadores/sangre , Encéfalo/patología , Trastorno Depresivo Mayor/patología , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Femenino , Giro del Cíngulo/metabolismo , Humanos , Masculino , MicroARNs/sangre , Ratas
11.
EMBO J ; 30(20): 4299-308, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21946562

RESUMEN

MicroRNAs are key regulators of transcriptome plasticity and have been implicated with the pathogenesis of brain diseases. Here, we employed massive parallel sequencing and provide, at an unprecedented depth, the complete and quantitative miRNAome of the mouse hippocampus, the prime target of neurodegenerative diseases such as Alzheimer's disease (AD). Using integrative genetics, we identify miR-34c as a negative constraint of memory consolidation and show that miR-34c levels are elevated in the hippocampus of AD patients and corresponding mouse models. In line with this, targeting miR-34 seed rescues learning ability in these mouse models. Our data suggest that miR-34c could be a marker for the onset of cognitive disturbances linked to AD and indicate that targeting miR-34c could be a suitable therapy.


Asunto(s)
Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , MicroARNs/metabolismo , Anciano , Enfermedad de Alzheimer/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Transcriptoma
12.
Neurobiol Dis ; 62: 135-43, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24075854

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia in the elderly but effective therapeutic strategies to treat AD are not yet available. This is also due to the fact that the pathological mechanisms that drive the pathogenesis of sporadic AD are still not sufficiently understood and may differ on the individual level. Several risk factors such as altered insulin-like peptide (ILP) signaling have been linked to AD and modulating the ILP system has been discussed as a potential therapeutic avenue. Here we show that insulin-like growth factor binding protein 7 (IGFBP7), a protein that attenuates the function of ILPs, is up-regulated in the brains of AD patients and in a mouse model for AD via a process that involves altered DNA-methylation and coincides with decreased ILP signaling. Mimicking the AD-situation in wild type mice, by increasing hippocampal IGFBP7 levels leads to impaired memory consolidation. Consistently, inhibiting IGFBP7 function in mice that develop AD-like memory impairment reinstates associative learning behavior. These data suggest that IGFBP7 is a critical regulator of memory consolidation and might be used as a biomarker for AD. Targeting IGFBP7 could be a novel therapeutic avenue for the treatment of AD patients.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Demencia/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Metilación de ADN , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/farmacología , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
Int J Neurosci ; 124(9): 704-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24405263

RESUMEN

Ganglioglioma is a rare central nervous system neoplasm representing 0.4% to 1.7% of all brain tumors and most frequently occurs in the pediatric population with an incidence of 7.6%. These tumors are usually slow-growing and well-circumscribed solid or cystic lesions. Gangliogliomatosis infrequently occurs in the frontal lobe, pineal gland, basal ganglia, hypothalamus, and optic chiasm, with very few reports of brainstem ganglioglioma. We report a case of a 35-year-old female who initially presented with headache, vertigo, ataxia, saccadic dysfunction, dysarthria, and dysmetria for several years due to an unknown etiology. Her brain imaging showed multiple lesions in the pons and the cerebellum with cystic changes and size reduction and enlargement over the next few years while her neurological symptoms continued to worsen. The patient received courses of steroid treatment that improved her neurological symptoms, suggesting an inflammatory component of her disease. Extensive workup for an inflammatory or infectious etiology was unfruitful and two brain biopsies were inconclusive. A third biopsy showed atypical glial nuclei, binucleated cells, and Rosenthal fibers and the presence of BRAF V600E mutation was detected. The diagnosis of gangliogliomatosis was consequently established. This case illustrates that gangliogliomatosis may present with the waxing-and-waning neurological signs and symptoms. It can masquerade inflammatory processes in the central nervous system on brain imaging and deserves careful consideration in the diagnosis of patients with an indolent course of neurological deterioration.


Asunto(s)
Neoplasias Encefálicas/patología , Tronco Encefálico/patología , Ganglioglioma/patología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Neuroglía/patología
14.
bioRxiv ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39005272

RESUMEN

Astrocytes provide crucial support for neurons, contributing to synaptogenesis, synaptic maintenance, and neurotransmitter recycling. Under pathological conditions, deregulation of astrocytes contributes to neurodegenerative diseases such as Alzheimer's disease (AD), highlighting the growing interest in targeting astrocyte function to address early phases of AD pathogenesis. While most research in this field has focused on protein-coding genes, non-coding RNAs, particularly long non-coding RNAs (lncRNAs), have emerged as significant regulatory molecules. In this study, we identified the lncRNA PRDM16-DT as highly enriched in the human brain, where it is almost exclusively expressed in astrocytes. PRDM16-DT and its murine homolog, Prdm16os, are downregulated in the brains of AD patients and in AD models. In line with this, knockdown of PRDM16-DT and Prdm16os revealed its critical role in maintaining astrocyte homeostasis and supporting neuronal function by regulating genes essential for glutamate uptake, lactate release, and neuronal spine density through interactions with the RE1-Silencing Transcription factor (Rest) and Polycomb Repressive Complex 2 (PRC2). Notably, CRISPR-mediated overexpression of Prdm16os mitigated functional deficits in astrocytes induced by stimuli linked to AD pathogenesis. These findings underscore the importance of PRDM16-DT in astrocyte function and its potential as a novel therapeutic target for neurodegenerative disorders characterized by astrocyte dysfunction.

15.
PLoS Biol ; 7(10): e1000208, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19806181

RESUMEN

Capping protein (CP) is a heterodimer that regulates actin assembly by binding to the barbed end of F-actin. In cultured nonneuronal cells, each CP subunit plays a critical role in the organization and dynamics of lamellipodia and filopodia. Mutations in either alpha or beta CP subunit result in retinal degeneration in Drosophila. However, the function of CP subunits in mammalian neurons remains unclear. Here, we investigate the role of the beta CP subunit expressed in the brain, Capzb2, in growth cone morphology and neurite outgrowth. We found that silencing Capzb2 in hippocampal neurons resulted in short neurites and misshapen growth cones in which microtubules overgrew into the periphery and completely overlapped with F-actin. In searching for the mechanisms underlying these cytoskeletal abnormalities, we identified beta-tubulin as a novel binding partner of Capzb2 and demonstrated that Capzb2 decreases the rate and the extent of tubulin polymerization in vitro. We mapped the region of Capzb2 that was required for the subunit to interact with beta-tubulin and inhibit microtubule polymerization. A mutant Capzb2 lacking this region was able to bind F-actin and form a CP heterodimer with alpha2-subunit. However, this mutant was unable to rescue the growth cone and neurite outgrowth phenotypes caused by Capzb2 knockdown. Together, these data suggest that Capzb2 plays an important role in growth cone formation and neurite outgrowth and that the underlying mechanism may involve direct interaction between Capzb2 and microtubules.


Asunto(s)
Proteína CapZ/fisiología , Conos de Crecimiento/ultraestructura , Tubulina (Proteína)/fisiología , Actinas/metabolismo , Animales , Sitios de Unión , Proteína CapZ/genética , Proteína CapZ/metabolismo , Dimerización , Conos de Crecimiento/fisiología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Ratones , Microtúbulos/metabolismo , Mutación , Regeneración Nerviosa , Neuritas/ultraestructura , Interferencia de ARN , Tubulina (Proteína)/metabolismo
16.
J Neuropathol Exp Neurol ; 81(12): 1008-1017, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179256

RESUMEN

Meningioma is the most common intracranial neoplasm, yet there is no effective therapy for recurrent/refractory meningiomas after surgery and radiation. Prostate-specific membrane antigen (PSMA) is an enzyme upregulated on endothelial cells of multiple neoplasms and is being investigated as a theranostic target. Until now, PSMA has not been studied in meningiomas. We aimed to verify PSMA endothelial expression in meningiomas, detect tumor grade variability, and investigate the relationship of PSMA signal with tumor recurrence. We analyzed 96 archival meningiomas including 58 de novo and 38 recurrent specimens. All specimens were stained routinely and immunostained for CD31 and PSMA. Slides were scanned and analyzed producing raw data for images of PSMA, CD31, PSMA/CD31, and PSMA/vasculature. PSMA expression was seen within 98.9% of meningioma samples. In the total cohort, higher-grade tumors had increased expression of raw PSMA and PSMA/CD31, and PSMA/vasculature ratios compared to grade 1 tumors. PSMA expression and PSMA/vasculature ratios (p = 0.0015) were higher in recurrent versus de novo tumors among paired samples. ROC curves demonstrated PSMA/CD31, PSMA/vasculature, and raw CD31 as indicators of tumor recurrence. Thus, PSMA is expressed within endothelial cells of meningiomas, is increased with tumor grade and recurrence, and persists with prior irradiation.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Masculino , Meningioma/cirugía , Recurrencia Local de Neoplasia , Medicina de Precisión , Células Endoteliales , Próstata , Neoplasias Meníngeas/cirugía
17.
Noncoding RNA ; 7(1)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535543

RESUMEN

The neurological damage of Alzheimer's disease (AD) is thought to be irreversible upon onset of dementia-like symptoms, as it takes years to decades for occult pathologic changes to become symptomatic. It is thus necessary to identify individuals at risk for the development of the disease before symptoms manifest in order to provide early intervention. Surrogate markers are critical for early disease detection, stratification of patients in clinical trials, prediction of disease progression, evaluation of response to treatment, and also insight into pathomechanisms. Here, we review the evidence for a number of microRNAs that may serve as biomarkers with possible mechanistic insights into the AD pathophysiologic processes, years before the clinical manifestation of the disease.

18.
Cereb Cortex Commun ; 1(1): tgaa031, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974611

RESUMEN

Cerebral amyloid angiopathy (CAA) in Alzheimer's disease (AD)-deposition of beta amyloid (Aß) within the walls of cerebral blood vessels-typically accompanies Aß buildup in brain parenchyma and causes abnormalities in vessel structure and function. We recently demonstrated that the immunoreactivity of activin receptor-like kinase 1 (ALK1), the type I receptor for circulating BMP9/BMP10 (bone morphogenetic protein) signaling proteins, is reduced in advanced, but not early stages of AD in CA3 pyramidal neurons. Here we characterize vascular expression of ALK1 in the context of progressive AD pathology accompanied by amyloid angiopathy in postmortem hippocampi using immunohistochemical methods. Hippocampal arteriolar wall ALK1 signal intensity was 35% lower in AD patients (Braak and Braak Stages IV and V [BBIV-V]; clinical dementia rating [CDR1-2]) as compared with subjects with early AD pathologic changes but either cognitively intact or with minimal cognitive impairment (BBIII; CDR0-0.5). The intensity of Aß signal in arteriolar walls was similar in all analyzed cases. These data suggest that, as demonstrated previously for specific neuronal populations, ALK1 expression in blood vessels is also vulnerable to the AD pathophysiologic process, perhaps related to CAA. However, cortical arterioles may remain responsive to the ALK1 ligands, such as BMP9 and BMP10 in early and moderate AD.

19.
Cureus ; 11(5): e4726, 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31355086

RESUMEN

This case of a radiation-naive patient with pilocytic astrocytoma highlights how deletions of CDKN2A (cyclin-dependent kinase Inhibitor 2A) and PTEN (phosphatase and tensin homolog) portended a poor clinical outcome. Pilocytic astrocytomas are grade 1 tumors usually occurring in children and young adults with KIAA1549-BRAF fusion defining the majority of pilocytic astrocytomas. The presence of CDKN2A and PTEN loss may be associated with aggressive biology in pilocytic astrocytoma and further studies should include comprehensive genomics in a larger series of adult pilocytic astrocytoma to evaluate this previously unreported finding. Providers need to be aware of this possibility given the potential for poor outcomes.

20.
J Alzheimers Dis ; 68(1): 357-365, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30775993

RESUMEN

Genome-wide association studies identified a single nucleotide polymorphism (SNP) in the MSRB3 gene encoding Methionine Sulfoxide Reductase-B3 (MsrB3) to be associated with the risk for low hippocampal volume and late onset Alzheimer's disease (AD). Subsequently, we identified AD-associated abnormal patterns of neuronal and vascular MsrB3 expression in postmortem hippocampi. The present study investigated the relationship between the MSRB3 SNP rs61921502, G (minor/risk allele) and MRI measures of brain injury including total brain volume, hippocampal volume, and white matter hyperintensities using linear regression models; the presence of brain infarcts using logistic regression models; and the incidence of stroke, dementia, and AD using Cox proportional hazards models in 2,038 Framingham Heart Study Offspring participants with MRI administered close to examination cycle 7 (1998-2001). Participants with neurological conditions that impede evaluation of vascular pathology by MRI, i.e., brain tumors, multiple sclerosis, and major head trauma, were excluded from the study. When adjusted for age and age squared at MRI exam, sex, and presence of Apolipoproteinɛ4 allele (APOE4), individuals with MSRB3 rs61921502 minor allele had increased odds for brain infarcts on MRI compared to those with no minor allele. However, in stratified analyses, MSRB3 rs61921502 minor allele was significantly associated with increased odds for MRI brain infarcts only in the absence of APOE4.


Asunto(s)
Alelos , Infarto Encefálico/genética , Demencia/genética , Predisposición Genética a la Enfermedad , Hipocampo/diagnóstico por imagen , Metionina Sulfóxido Reductasas/genética , Polimorfismo de Nucleótido Simple , Anciano , Infarto Encefálico/diagnóstico por imagen , Infarto Encefálico/epidemiología , Demencia/diagnóstico por imagen , Demencia/epidemiología , Femenino , Humanos , Incidencia , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA