Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Acoust Soc Am ; 146(5): 3590, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31795641

RESUMEN

Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.

2.
IEEE Trans Image Process ; 28(2): 687-698, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30136941

RESUMEN

Image restoration methods aim to recover the underlying clean image from corrupted observations. The expected patch log-likelihood (EPLL) algorithm is a powerful image restoration method that uses a Gaussian mixture model (GMM) prior on the patches of natural images. Although it is very effective for restoring images, its high runtime complexity makes the EPLL ill-suited for most practical applications. In this paper, we propose three approximations to the original EPLL algorithm. The resulting algorithm, which we call the fast-EPLL (FEPLL), attains a dramatic speed-up of two orders of magnitude over EPLL while incurring a negligible drop in the restored image quality (less than 0.5 dB). We demonstrate the efficacy and versatility of our algorithm on a number of inverse problems, such as denoising, deblurring, super-resolution, inpainting, and devignetting. To the best of our knowledge, the FEPLL is the first algorithm that can competitively restore a pixel image in under 0.5 s for all the degradations mentioned earlier without specialized code optimizations, such as CPU parallelization or GPU implementation.

3.
IEEE Trans Image Process ; 26(9): 4389-4403, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28613174

RESUMEN

Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.

4.
IEEE Trans Image Process ; 26(2): 549-560, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27849535

RESUMEN

In this paper, we aim at super-resolving a low-resolution texture under the assumption that a high-resolution patch of the texture is available. To do so, we propose a variational method that combines two approaches that are texture synthesis and image reconstruction. The resulting objective function holds a nonconvex energy that involves a quadratic distance to the low-resolution image, a histogram-based distance to the high-resolution patch, and a nonlocal regularization that links the missing pixels with the patch pixels. As for the histogram-based measure, we use a sum of Wasserstein distances between the histograms of some linear transformations of the textures. The resulting optimization problem is efficiently solved with a primal-dual proximal method. Experiments show that our method leads to a significant improvement, both visually and numerically, with respect to the state-of-the-art algorithms for solving similar problems.

5.
Brain Struct Funct ; 222(4): 1645-1662, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27581617

RESUMEN

Despite its significant functional and clinical interest, the anatomy of the uncinate fasciculus (UF) has received little attention. It is known as a 'hook-shaped' fascicle connecting the frontal and anterior temporal lobes and is believed to consist of multiple subcomponents. However, the knowledge of its precise connectional anatomy in humans is lacking, and its subcomponent divisions are unclear. In the present study, we evaluate the anatomy of the UF and provide its detailed normative description in 30 healthy subjects with advanced particle-filtering tractography with anatomical priors and robustness to crossing fibers with constrained spherical deconvolution. We extracted the UF by defining its stem encompassing all streamlines that converge into a compact bundle, which consisted not only of the classic hook-shaped fibers, but also of straight horizontally oriented. We applied an automatic-clustering method to subdivide the UF bundle and revealed five subcomponents in each hemisphere with distinct connectivity profiles, including different asymmetries. A layer-by-layer microdissection of the ventral part of the external and extreme capsules using Klingler's preparation also demonstrated five types of uncinate fibers that, according to their pattern, depth, and cortical terminations, were consistent with the diffusion-based UF subcomponents. The present results shed new light on the UF cortical terminations and its multicomponent internal organization with extended cortical connections within the frontal and temporal cortices. The different lateralization patterns we report within the UF subcomponents reconcile the conflicting asymmetry findings of the literature. Such results clarifying the UF structural anatomy lay the groundwork for more targeted investigations of its functional role, especially in semantic language processing.


Asunto(s)
Lóbulo Frontal/anatomía & histología , Lóbulo Temporal/anatomía & histología , Sustancia Blanca/anatomía & histología , Adulto , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Microdisección , Vías Nerviosas/anatomía & histología , Adulto Joven
6.
IEEE Trans Image Process ; 25(8): 3505-17, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27249829

RESUMEN

We consider the problem of recovering a high-resolution image from a pair consisting of a complete low-resolution image and a high-resolution but incomplete one. We refer to this task as the image zoom completion problem. After discussing possible contexts in which this setting may arise, we introduce a nonlocal regularization strategy, giving full details concerning the numerical optimization of the corresponding energy and discussing its benefits and shortcomings. We also derive two total variation-based algorithms and evaluate the performance of the proposed methods on a set of natural and textured images. We compare the results and get with those obtained with two recent state-of-the-art single-image super-resolution algorithms.

7.
IEEE Trans Image Process ; 23(8): 3506-21, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24951687

RESUMEN

Image denoising is a central problem in image processing and it is often a necessary step prior to higher level analysis such as segmentation, reconstruction, or super-resolution. The nonlocal means (NL-means) perform denoising by exploiting the natural redundancy of patterns inside an image; they perform a weighted average of pixels whose neighborhoods (patches) are close to each other. This reduces significantly the noise while preserving most of the image content. While it performs well on flat areas and textures, it suffers from two opposite drawbacks: it might over-smooth low-contrasted areas or leave a residual noise around edges and singular structures. Denoising can also be performed by total variation minimization-the Rudin, Osher and Fatemi model-which leads to restore regular images, but it is prone to over-smooth textures, staircasing effects, and contrast losses. We introduce in this paper a variational approach that corrects the over-smoothing and reduces the residual noise of the NL-means by adaptively regularizing nonlocal methods with the total variation. The proposed regularized NL-means algorithm combines these methods and reduces both of their respective defaults by minimizing an adaptive total variation with a nonlocal data fidelity term. Besides, this model adapts to different noise statistics and a fast solution can be obtained in the general case of the exponential family. We develop this model for image denoising and we adapt it to video denoising with 3D patches.


Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/métodos , Modelos Estadísticos , Fotograbar/métodos , Grabación en Video/métodos , Simulación por Computador , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
8.
IEEE Trans Image Process ; 18(12): 2661-72, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19666338

RESUMEN

Image denoising is an important problem in image processing since noise may interfere with visual or automatic interpretation. This paper presents a new approach for image denoising in the case of a known uncorrelated noise model. The proposed filter is an extension of the nonlocal means (NL means) algorithm introduced by Buades , which performs a weighted average of the values of similar pixels. Pixel similarity is defined in NL means as the Euclidean distance between patches (rectangular windows centered on each two pixels). In this paper, a more general and statistically grounded similarity criterion is proposed which depends on the noise distribution model. The denoising process is expressed as a weighted maximum likelihood estimation problem where the weights are derived in a data-driven way. These weights can be iteratively refined based on both the similarity between noisy patches and the similarity of patches extracted from the previous estimate. We show that this iterative process noticeably improves the denoising performance, especially in the case of low signal-to-noise ratio images such as synthetic aperture radar (SAR) images. Numerical experiments illustrate that the technique can be successfully applied to the classical case of additive Gaussian noise but also to cases such as multiplicative speckle noise. The proposed denoising technique seems to improve on the state of the art performance in that latter case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA