Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 134(6): 659-674, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484028

RESUMEN

Circadian rhythms in physiology and behavior are ≈24-hour biological cycles regulated by internal biological clocks (ie, circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. These clocks are present in virtually all cells in the body, including cardiomyocytes. Many decades ago, clinicians and researchers became interested in studying daily patterns of triggers for sudden cardiac death, the incidence of sudden cardiac death, and cardiac arrhythmias. This review highlights historical and contemporary studies examining the role of day/night rhythms in the timing of cardiovascular events, delves into changes in the timing of these events over the last few decades, and discusses cardiovascular disease-specific differences in the timing of cardiovascular events. The current understanding of the environmental, behavioral, and circadian mechanisms that regulate cardiac electrophysiology is examined with a focus on the circadian regulation of cardiac ion channels and ion channel regulatory genes. Understanding the contribution of environmental, behavioral, and circadian rhythms on arrhythmia susceptibility and the incidence of sudden cardiac death will be essential in developing future chronotherapies.


Asunto(s)
Arritmias Cardíacas , Relojes Circadianos , Humanos , Ritmo Circadiano , Miocitos Cardíacos , Muerte Súbita Cardíaca/etiología , Electrofisiología Cardíaca
2.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R109-R121, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38766772

RESUMEN

Rhythmic feeding behavior is critical for regulating phase and amplitude in the ≈24-h variation of heart rate (RR intervals), ventricular repolarization (QT intervals), and core body temperature in mice. We hypothesized changes in cardiac electrophysiology associated with feeding behavior were secondary to changes in core body temperature. Telemetry was used to record electrocardiograms and core body temperature in mice during ad libitum-fed conditions and after inverting normal feeding behavior by restricting food access to the light cycle. Light cycle-restricted feeding modified the phase and amplitude of 24-h rhythms in RR and QT intervals, and core body temperature to realign with the new feeding time. Changes in core body temperature alone could not account for changes in phase and amplitude in the ≈24-h variation of the RR intervals. Heart rate variability analysis and inhibiting ß-adrenergic and muscarinic receptors suggested that changes in the phase and amplitude of 24-h rhythms in RR intervals were secondary to changes in autonomic signaling. In contrast, changes in QT intervals closely mirrored changes in core body temperature. Studies at thermoneutrality confirmed that the daily variation in QT interval, but not RR interval, primarily reflected daily changes in core body temperature (even in ad libitum-fed conditions). Correcting the QT interval for differences in core body temperature helped unmask QT interval prolongation after starting light cycle-restricted feeding and in a mouse model of long QT syndrome. We conclude feeding behavior alters autonomic signaling and core body temperature to regulate phase and amplitude in RR and QT intervals, respectively.NEW & NOTEWORTHY We used time-restricted feeding and thermoneutrality to demonstrate that different mechanisms regulate the 24-h rhythms in heart rate and ventricular repolarization. The daily rhythm in heart rate reflects changes in autonomic input, whereas daily rhythms in ventricular repolarization reflect changes in core body temperature. This novel finding has major implications for understanding 24-h rhythms in mouse cardiac electrophysiology, arrhythmia susceptibility in transgenic mouse models, and interpretability of cardiac electrophysiological data acquired in thermoneutrality.


Asunto(s)
Temperatura Corporal , Ritmo Circadiano , Conducta Alimentaria , Frecuencia Cardíaca , Ratones Endogámicos C57BL , Animales , Ritmo Circadiano/fisiología , Frecuencia Cardíaca/fisiología , Conducta Alimentaria/fisiología , Masculino , Temperatura Corporal/fisiología , Ratones , Electrocardiografía , Fotoperiodo , Factores de Tiempo , Sistema Nervioso Autónomo/fisiología
3.
bioRxiv ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38659967

RESUMEN

It has been well established that cardiovascular diseases exhibit significant differences between sexes in both preclinical models and humans. In addition, there is growing recognition that disrupted circadian rhythms can contribute to the onset and progression of cardiovascular diseases. However little is known about sex differences between the cardiac circadian clock and circadian transcriptomes in mice. Here, we show that the the core clock genes are expressed in common in both sexes but the circadian transcriptome of the mouse heart is very sex-specific. Hearts from female mice expressed significantly more rhythmically expressed genes (REGs) than male hearts and the temporal pattern of REGs was distinctly different between sexes. We next used a cardiomyocyte-specific knock out of the core clock gene, Bmal1, to investigate its role in sex-specific gene expression in the heart. All sex differences in the circadian transcriptomes were significantly diminished with cardiomyocyte-specific loss of Bmal1. Surprisingly, loss of cardiomyocyte Bmal1 also resulted in a roughly 8-fold reduction in the number of all the differentially expressed genes between male and female hearts. We conclude that cardiomyocyte-specific Bmal1, and potentially the core clock mechanism, is vital in conferring sex-specific gene expression in the adult mouse heart.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA