Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(20): 11698-11708, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33978654

RESUMEN

It is important, but challenging, to measure the (photo)induced switching of molecules in different chemical environments, from solution through thin layers to solid bulk crystals. We compare the cis-trans conformational switching of commercial azobenzene molecules in different liquid and solid environments: polar solutions, liquid polymers, 2D nanostructures and 3D crystals. We achieve this goal by using complementary techniques: optical absorption spectroscopy, femtosecond transient absorption spectroscopy, Kelvin probe force microscopy and reflectance spectroscopy, supported by density functional theory calculations. We could observe the same molecule showing fast switching in a few picoseconds, when studied as an isolated molecule in water, or slow switching in tens of minutes, when assembled in 3D crystals. It is worth noting that we could also observe switching for small ensembles of molecules (a few attomoles), representing an intermediate case between single molecules and bulk structures. This was achieved using Kelvin probe force microscopy to monitor the change of surface potential of nanometric thin 2D islands containing ca. 106 molecules each, self-assembled on a substrate. This approach is not limited to azobenzenes, but can be used to observe molecular switching in isolated ensembles of molecules or other nano-objects and to study synergistic molecular processes at the nanoscale.

2.
ACS Nano ; 15(2): 2654-2667, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33464821

RESUMEN

Large area van der Waals (vdW) thin films are assembled materials consisting of a network of randomly stacked nanosheets. The multiscale structure and the two-dimensional (2D) nature of the building block mean that interfaces naturally play a crucial role in the charge transport of such thin films. While single or few stacked nanosheets (i.e., vdW heterostructures) have been the subject of intensive works, little is known about how charges travel through multilayered, more disordered networks. Here, we report a comprehensive study of a prototypical system given by networks of randomly stacked reduced graphene oxide 2D nanosheets, whose chemical and geometrical properties can be controlled independently, permitting to explore percolated networks ranging from a single nanosheet to some billions with room-temperature resistivity spanning from 10-5 to 10-1 Ω·m. We systematically observe a clear transition between two different regimes at a critical temperature T*: Efros-Shklovskii variable-range hopping (ES-VRH) below T* and power law behavior above. First, we demonstrate that the two regimes are strongly correlated with each other, both depending on the charge localization length ξ, calculated by the ES-VRH model, which corresponds to the characteristic size of overlapping sp2 domains belonging to different nanosheets. Thus, we propose a microscopic model describing the charge transport as a geometrical phase transition, given by the metal-insulator transition associated with the percolation of quasi-one-dimensional nanofillers with length ξ, showing that the charge transport behavior of the networks is valid for all geometries and defects of the nanosheets, ultimately suggesting a generalized description on vdW and disordered thin films.

3.
Nanoscale ; 10(48): 23018-23026, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30506071

RESUMEN

Metal-organic composites are of great interest for a wide range of applications. The control of their structure remains a challenge, one of the problems being a complex interplay of covalent and supramolecular interactions. This paper describes the self-assembly, thermal stability and phase transitions of ordered structures of silver atoms and thiol molecules spanning from the molecular to the mesoscopic scale. Building blocks of molecularly defined clusters formed from 44 silver atoms, each particle coated by a monolayer of 30 thiol ligands, are used as ideal building blocks. By changing solvent and temperature it is possible to tune the self-assembled 3D crystals of pristine nanoparticles or, conversely, 2D layered structures, with alternated stacks of Ag atoms and thiol monolayers. The study investigates morphological, chemical and structural stability of these materials between 25 and 300 °C in situ and ex situ at the nanoscale by combining optical and electronic spectroscopic and scattering techniques, scanning probe microscopies and density-functional theory (DFT) calculations. The proposed wet-chemistry approach is relatively cheap, easy to implement, and scalable, allowing the fabricated materials with tuned properties using the same building blocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA