Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36758966

RESUMEN

Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view for winemaking and the production of other foods.


Asunto(s)
Hanseniaspora , Vino , Hanseniaspora/genética , Fermentación , Vino/análisis , Levaduras/genética , Biología
2.
Chem Biodivers ; 20(10): e202300862, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37647349

RESUMEN

Several Baccharis species are popularly known in traditional medicine as "carquejas", "vassouras", "ervas-santas" and "mio-mios", and are used as anti-inflammatories, digestives, and diuretics. This study aimed to investigate the chemical compositions and cytotoxic activities of essential oils (EOs) of six Baccharis species belonging to subgenus Coridifoliae, namely B. albilanosa, B. coridifolia, B. erigeroides, B. napaea, B. ochracea, and B. pluricapitulata. GC/MS analyses of the EOs showed that the oxygenated sesquiterpenes spathulenol (7.32-38.22 %) and caryophyllene oxide (10.83-16.75 %) were the major components for all the species. The EOs of almost all species were cytotoxic against cancer (BT-549, KB, SK-MEL and SK-OV-3) and normal kidney (VERO and LLC-PK1) cell lines, whereas B. erigeroides EO showed cytotoxicity only against LLC-PK1. This article augments the current knowledge about the chemical-biological properties of Baccharis subgenus Coridifoliae and discusses the therapeutic potentials of these economically unexploited plants.

3.
J Sci Food Agric ; 102(14): 6780-6785, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35942662

RESUMEN

BACKGROUND: Animal odor, is one of the most common aroma defects described in the honey odor aroma wheel. It comprises two secondary descriptors: 'fecal' and 'cowshed'. However, the compounds responsible for these honey defects have not been fully identified. In this context, the aim of this work was to identify the compounds responsible for the aromatic defect 'fecal' in Uruguayan honeys by means of gas chromatography coupled to olfactometry (GC-O). RESULTS: Samples of honey described by beekeepers as having fecal aroma were analyzed by GC-O and gas chromatography coupled to mass spectrometry (GC-MS). Through GC-O, it was possible to establish the region of the chromatogram corresponding to the fecal descriptor, while the GC-MS analysis allowed to identify indole as the compound responsible for the fecal descriptor. The content of indole in the analyzed samples ranged between 132 and 414 µg kg-1 . The melissopalynological analysis indicated the presence of Scutia buxifolia ('quebracho' or 'coronilla') pollen in all samples studied. The volatile profile of Scutia buxifolia flowers was evaluated during the full day, enabling the identification of indole as one of its components. The detection threshold value for indole in honey was experimentally determined as 64 µg kg-1 of honey, a value lower than the concentration found in the evaluated samples. CONCLUSION: Results from the study allowed the identification of indole as the compound responsible for the 'fecal' aroma defect in Scutia buxifolia honeys. © 2022 Society of Chemical Industry.


Asunto(s)
Miel , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Miel/análisis , Indoles , Odorantes/análisis , Olfatometría/métodos , Compuestos Orgánicos Volátiles/química
4.
Chem Biodivers ; 18(6): e2100064, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33950577

RESUMEN

Baccharis dracunculifolia DC. and Baccharis microdonta DC. (Asteraceae) are woody species morphologically similar growing in Uruguay, where not taxonomists people often confuse them in field conditions. As the essential oil of B. dracunculifolia ('vassoura' oil) is highly prized by the flavor and fragrance industry, the correct differentiation of the two species is a key factor in exploiting them profitably and reasonably. To differentiate both Baccharis species, in this work their volatile expression profiles were studied as an alternative tool to determine authenticity and quality. Volatile organic compounds (VOCs) were monthly extracted during an entire year from aerial parts of wild populations by simultaneous distillation extraction (SDE), and studied by gas chromatography/mass spectrometry (GC/MS; identification) and conventional gas chromatography (GC-FID; component abundances determination). Enantioselective gas chromatography/mass spectrometry (Es-GC/MS) was applied in the search of parameters able to ensure genuineness of each species extract. Qualitative VOCs profiles were found to be similar for both species, being ß-pinene, limonene, spathulenol, caryophyllene oxide, and viridiflorol the main components. However, the abundance of those VOCs were two to ten times higher in B. dracunculifolia than in B. microdonta during the year of study. These Baccharis spp. showed species-specific patterns of VOCs expression according to the seasonality, and interestingly, oxygenated compounds (trans-pinocarveol and myrtenal) increased their abundances at full-flowering stages. The enantiomeric distribution of selected monoterpenes (α- and ß-pinenes, limonene, linalool, terpinen-4-ol, and α-terpineol) presented differential values for both Baccharis spp., meaning that Es-GC might be a useful tool for differentiating chemically both species in Uruguay for genuineness determination purposes.


Asunto(s)
Baccharis/química , Aceites Volátiles/aislamiento & purificación , Estaciones del Año , Compuestos Orgánicos Volátiles/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles/química , Compuestos Orgánicos Volátiles/química
5.
Molecules ; 26(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201056

RESUMEN

The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6-11.0 mg GAE/g digest, 65.5-97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5-214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5-25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97-11.42 mg/mL and 58.04-105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims "no-added sugars" and "source of fiber", as well as those with good sensory quality (6.9-6.7, scale 1-9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others.


Asunto(s)
Citrus sinensis/química , Citrus/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Línea Celular , Cromatografía Líquida de Alta Presión/métodos , Digestión/fisiología , Flavonoides/química , Flavonoides/farmacología , Frutas/química , Tracto Gastrointestinal/fisiología , Humanos , Ratones , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7 , Espectrometría de Masas en Tándem/métodos
6.
Yeast ; 37(9-10): 427-435, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32638443

RESUMEN

Benzenoids are compounds associated with floral and fruity flavours in flowers, fruits and leaves and present a role in hormonal signalling in plants. These molecules are produced by the phenyl ammonia lyase pathway. However, some yeasts can also synthesize them from aromatic amino acids using an alternative pathway that remains unknown. Hanseniaspora vineae can produce benzenoids at levels up to two orders of magnitude higher than Saccharomyces species, so it is a model microorganism for studying benzenoid biosynthesis pathways in yeast. According to their genomes, several enzymes have been proposed to be involved in a mandelate pathway similar to that described for some prokaryotic cells. Among them, the ARO10 gene product could present benzoylformate decarboxylase activity. This enzyme catalyses the decarboxylation of benzoylformate into benzaldehyde at the end of the mandelate pathway in benzyl alcohol formation. Two homologous genes of ARO10 were found in the two sequenced H. vineae strains. In this study, nine other H. vineae strains were analysed to detect the presence and per cent homology of ARO10 sequences by PCR using specific primers designed for this species. Also, the copy number of the genes was estimated by quantitative PCR. To verify the relation of ARO10 with the production of benzyl alcohol during fermentation, a deletion mutant in the ARO10 gene of Saccharomyces cerevisiae was used. The two HvARO10 paralogues were analysed and compared with other α-ketoacid decarboxylases at the sequence and structural level.


Asunto(s)
Derivados del Benceno/metabolismo , Vías Biosintéticas/genética , Hanseniaspora/genética , Piruvato Descarboxilasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Benzaldehídos/metabolismo , Alcohol Bencilo/metabolismo , Fermentación , Hanseniaspora/metabolismo
7.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32561586

RESUMEN

Benzenoid-derived metabolites act as precursors for a wide variety of products involved in essential metabolic roles in eukaryotic cells. They are synthesized in plants and some fungi through the phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) pathways. Ascomycete yeasts and animals both lack the capacity for PAL/TAL pathways, and metabolic reactions leading to benzenoid synthesis in these organisms have remained incompletely known for decades. Here, we show genomic, transcriptomic, and metabolomic evidence that yeasts use a mandelate pathway to synthesize benzenoids, with some similarities to pathways used by bacteria. We conducted feeding experiments using a synthetic fermentation medium that contained either 13C-phenylalanine or 13C-tyrosine, and, using methylbenzoylphosphonate (MBP) to inhibit benzoylformate decarboxylase, we were able to accumulate intracellular intermediates in the yeast Hanseniaspora vineae To further confirm this pathway, we tested in separate fermentation experiments three mutants with deletions in the key genes putatively proposed to form benzenoids (Saccharomyces cerevisiaearo10Δ, dld1Δ, and dld2Δ strains). Our results elucidate the mechanism of benzenoid synthesis in yeast through phenylpyruvate linked with the mandelate pathway to produce benzyl alcohol and 4-hydroxybenzaldehyde from the aromatic amino acids phenylalanine and tyrosine, as well as sugars. These results provide an explanation for the origin of the benzoquinone ring, 4-hydroxybenzoate, and suggest that Aro10p has benzoylformate and 4-hydroxybenzoylformate decarboxylase functions in yeast.IMPORTANCE We present here evidence of the existence of the mandelate pathway in yeast for the synthesis of benzenoids. The link between phenylpyruvate- and 4-hydroxyphenlypyruvate-derived compounds with the corresponding synthesis of benzaldehydes through benzoylformate decarboxylation is demonstrated. Hanseniaspora vineae was used in these studies because of its capacity to produce benzenoid derivatives at a level 2 orders of magnitude higher than that produced by Saccharomyces Contrary to what was hypothesized, neither ß-oxidation derivatives nor 4-coumaric acid is an intermediate in the synthesis of yeast benzenoids. Our results might offer an answer to the long-standing question of the origin of 4-hydroxybenzoate for the synthesis of Q10 in humans.


Asunto(s)
Derivados del Benceno/metabolismo , Hanseniaspora/metabolismo , Ácidos Mandélicos/metabolismo , Redes y Vías Metabólicas
8.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366992

RESUMEN

Hanseniaspora is the main genus of the apiculate yeast group that represents approximately 70% of the grape-associated microflora. Hanseniaspora vineae is emerging as a promising species for quality wine production compared to other non-Saccharomyces species. Wines produced by H. vineae with Saccharomyces cerevisiae consistently exhibit more intense fruity flavors and complexity than wines produced by S. cerevisiae alone. In this work, genome sequencing, assembling, and phylogenetic analysis of two strains of H. vineae showed that it is a member of the Saccharomyces complex and it diverged before the whole-genome duplication (WGD) event from this clade. Specific flavor gene duplications and absences were identified in the H. vineae genome compared to 14 fully sequenced industrial S. cerevisiae genomes. The increased formation of 2-phenylethyl acetate and phenylpropanoids such as 2-phenylethyl and benzyl alcohols might be explained by gene duplications of H. vineae aromatic amino acid aminotransferases (ARO8 and ARO9) and phenylpyruvate decarboxylases (ARO10). Transcriptome and aroma profiles under fermentation conditions confirmed these genes were highly expressed at the beginning of stationary phase coupled to the production of their related compounds. The extremely high level of acetate esters produced by H. vineae compared to that by S. cerevisiae is consistent with the identification of six novel proteins with alcohol acetyltransferase (AATase) domains. The absence of the branched-chain amino acid transaminases (BAT2) and acyl coenzyme A (acyl-CoA)/ethanol O-acyltransferases (EEB1) genes correlates with H. vineae's reduced production of branched-chain higher alcohols, fatty acids, and ethyl esters, respectively. Our study provides sustenance for understanding and potentially utilizing genes that determine fermentation aromas.IMPORTANCE The huge diversity of non-Saccharomyces yeasts in grapes is dominated by the apiculate genus Hanseniaspora Two native strains of Hanseniaspora vineae applied to winemaking because of their high oenological potential in aroma and fermentation performance were selected to obtain high-quality genomes. Here, we present a phylogenetic analysis and the complete transcriptome and aroma metabolome of H. vineae during three fermentation steps. This species produced significantly richer flavor compound diversity than Saccharomyces, including benzenoids, phenylpropanoids, and acetate-derived compounds. The identification of six proteins, different from S. cerevisiae ATF, with diverse acetyltransferase domains in H. vineae offers a relevant source of native genetic variants for this enzymatic activity. The discovery of benzenoid synthesis capacity in H. vineae provides a new eukaryotic model to dilucidate an alternative pathway to that catalyzed by plants' phenylalanine lyases.


Asunto(s)
Genoma Fúngico , Hanseniaspora/genética , Gusto , Transcriptoma , Vino/análisis , Fermentación , Hanseniaspora/metabolismo
9.
Chem Biodivers ; 16(5): e1800442, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30725525

RESUMEN

Propolis samples from north-west Argentina (Amaicha del Valle, Tucumán) were evaluated by palynology, FT-IR spectra, and RP-HPTLC. In addition, the volatile fraction was studied by HS-SPME-GC/MS. The botanical species most visited by Apis mellifera L. near the apiaries were collected and their RP-HPTLC extracts profiles were compared with propolis samples. In addition, GC/MS was performed for volatile compounds from Zuccagnia punctata Cav. (Fabaceae). FT-IR spectra and RP-HPTLC fingerprints of propolis samples showed similar profiles. In RP-HPTLC analyses, only Z. punctata presented a similar fingerprint to Amaicha propolis. The major volatile compounds present in both were trans-linalool oxide (furanoid), 6-camphenone, linalool, trans-pinocarveol, p-cymen-8-ol, and 2,3,6-trimethylbenzaldehyde. Potential variations for the Amaicha del Valle propolis volatile fraction as consequence of propolis sample preparation were demonstrated.


Asunto(s)
Fitoquímicos/química , Própolis/química , Argentina , Cromatografía Líquida de Alta Presión , Fabaceae/química , Fabaceae/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Microscopía , Aceites Volátiles/química , Fitoquímicos/aislamiento & purificación , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Análisis de Componente Principal , Própolis/aislamiento & purificación , Microextracción en Fase Sólida , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/aislamiento & purificación
10.
Chem Biodivers ; 15(5): e1800017, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29537727

RESUMEN

Chemical bioprospecting is an important tool for generating knowledge regarding local human-threatened floras and for conservation management. For Baccharis L. (Asteraceae), several volatile components have been reported for Brazil, Argentina, Bolivia, and Chile as a result of bioprospection, but not for Uruguayan flora, which is composed of more than 50 native species. In this work, through collection of aerial parts of different species and volatile simultaneous-distillation extraction and gas chromatography-mass spectrometry analyses, twelve native species of Baccharis were studied (B. articulata, B. cultrata, B. genistifolia, B. gibertii, B. gnaphalioides, B. ochracea, B. phyteumoides, B. punctulata, B. crispa, B. dracunculifolia, B. linearifolia subsp. linearifolia, and B. spicata). A detailed analysis of the male and female volatile composition was conducted for the last four species. The profiles of B. cultrata, B. genistifolia, B. gibertii, and B. gnaphalioides are reported for the first time. Because half of the species analyzed in this work are in Uruguay and are threatened or potentially threatened by human economic activities, the importance of their conservation as natural, sustainable resources is highlighted.


Asunto(s)
Baccharis/química , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Componentes Aéreos de las Plantas/química , Especificidad de la Especie , Uruguay
11.
Yeast ; 33(7): 339-43, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26888345

RESUMEN

During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Acetaldehído/metabolismo , Antocianinas/metabolismo , Fermentación , Saccharomyces cerevisiae/metabolismo , Vino , Cromatografía Líquida de Alta Presión , Técnicas de Cocultivo , Color , Espectrometría de Masas , Saccharomycetales/metabolismo
12.
Yeast ; 33(7): 323-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26945700

RESUMEN

In several grape varieties, the dominating aryl alkyl alcohols found are the volatile group of phenylpropanoid-related compounds, such as glycosylated benzyl and 2-phenylethyl alcohol, which contribute to wine with floral and fruity aromas after being hydrolysed during fermentation. Saccharomyces cerevisiae is largely recognized as the main agent in grape must fermentation, but yeast strains belonging to other genera, including Hanseniaspora, are known to predominate during the first stages of alcoholic fermentation. Although non-Saccharomyces yeast strains have a well-recognized genetic diversity, understanding of their impact on wine flavour richness is still emerging. In this study, 11 Hansenisapora vineae strains were used to ferment a chemically defined simil-grape fermentation medium, resembling the nutrient composition of grape juice but devoid of grape-derived secondary metabolites. GC-MS analysis was performed to determine volatile compounds in the produced wines. Our results showed that benzyl alcohol, benzyl acetate and 2-phenylethyl acetate are significantly synthesized by H. vineae strains. Levels of these compounds found in fermentations with 11 H. vineae different strains were one or two orders of magnitude higher than those measured in fermentations with a known S. cerevisiae wine strain. The implications for winemaking in response to the negative correlation of benzyl alcohol, benzyl acetate and 2-phenylethyl acetate production with yeast assimilable nitrogen concentrations are discussed. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Fermentación , Hanseniaspora/metabolismo , Nitrógeno/metabolismo , Fenoles/metabolismo , Vino , Acetatos/metabolismo , Compuestos de Amonio/química , Compuestos de Amonio/metabolismo , Alcohol Bencilo/metabolismo , Compuestos de Bencilo/metabolismo , Aromatizantes/análisis , Aromatizantes/química , Cromatografía de Gases y Espectrometría de Masas , Nitrógeno/química , Fenoles/análisis , Fenoles/química , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/metabolismo , Saccharomyces cerevisiae/metabolismo , Vitis/química
13.
Plant Cell ; 25(12): 4777-88, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24319081

RESUMEN

The grapevine (Vitis vinifera) cultivar Tannat is cultivated mainly in Uruguay for the production of high-quality red wines. Tannat berries have unusually high levels of polyphenolic compounds, producing wines with an intense purple color and remarkable antioxidant properties. We investigated the genetic basis of these important characteristics by sequencing the genome of the Uruguayan Tannat clone UY11 using Illumina technology, followed by a mixture of de novo assembly and iterative mapping onto the PN40024 reference genome. RNA sequencing data for genome reannotation were processed using a combination of reference-guided annotation and de novo transcript assembly, allowing 5901 previously unannotated or unassembled genes to be defined and resulting in the discovery of 1873 genes that were not shared with PN40024. Expression analysis showed that these cultivar-specific genes contributed substantially (up to 81.24%) to the overall expression of enzymes involved in the synthesis of phenolic and polyphenolic compounds that contribute to the unique characteristics of the Tannat berries. The characterization of the Tannat genome therefore indicated that the grapevine reference genome lacks many genes that appear to be relevant for the varietal phenotype.


Asunto(s)
Genoma de Planta , Polifenoles/biosíntesis , Vitis/genética , Antioxidantes/metabolismo , Frutas/química , Frutas/genética , Anotación de Secuencia Molecular , Fenotipo , Polifenoles/genética , Valores de Referencia , Análisis de Secuencia de ARN , Transcriptoma , Uruguay , Vitis/metabolismo
14.
J Sep Sci ; 38(17): 3038-46, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26140379

RESUMEN

The Baccharis genus has more than 400 species of aromatic plants. However, only approximately 50 species have been studied in oil composition to date. From these studies, very few take into consideration differences between male and female plants, which is a significant and distinctive factor in Baccharis in the Asteraceae family. Baccharis articulata is a common shrub that grows wild in south Brazil, northern and central Argentina, Bolivia, Paraguay and Uruguay. It is considered to be a medicinal plant and is employed in traditional medicine. We report B. articulata male and female volatile composition obtained by simultaneous distillation-extraction technique and analyzed by gas chromatography with mass spectrometry. Also, an assessment of aromatic differences between volatile extracts was evaluated by gas chromatography with olfactometry. The results show a very similar chemical composition between male and female extracts, with a high proportion of terpene compounds of which ß-pinene, limonene and germacrene D are the main components. Despite the chemical similarity, great differences in aromatic profile were found: male plant samples exhibited the strongest odorants in number and intensity of aromatic attributes. These differences explain field observations which indicate differences between male and female flower aroma, and might be of ecological significance in the attraction of pollinating insects.


Asunto(s)
Baccharis/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Olfatometría/métodos , Extractos Vegetales/análisis , Baccharis/fisiología , Monoterpenos Bicíclicos , Compuestos Bicíclicos con Puentes/análisis , Cromatografía en Capa Delgada , Ciclohexenos/análisis , Destilación , Limoneno , Monoterpenos/análisis , Odorantes/análisis , Aceites Volátiles/análisis , Plantas Medicinales/química , Plantas Medicinales/fisiología , Sesquiterpenos de Germacrano/análisis , Temperatura , Terpenos/análisis , Compuestos Orgánicos Volátiles/análisis
15.
Chem Biodivers ; 12(9): 1339-48, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26363878

RESUMEN

Baccharis is a widespread genus belonging to the Asteraceae family that includes almost 400 species exclusively from the Americas. Even when studied in detail, the taxonomic classification among species from this genus is not yet fully defined. Within the framework of our study of the volatile composition of the Baccharis genus, four species (B. trimera, B. milleflora, B. tridentata, and B. uncinella) were collected from the 'Campos de Cima da Serra' highlands of the Brazilian state of Rio Grande do Sul. The aerial parts were dried and extracted by the simultaneous distillation extraction (SDE) procedure. This is the first time that SDE has been applied to obtain and compare the volatile-extract composition in the Baccharis genus. Characterization of the volatile extracts allowed the identification of 180 peaks with many coeluting components; these latter being detailed for the first time for this genus. The multivariate statistical analyses allowed separating the volatile extracts of the four populations of Baccharis into two separate groups. The first one included the B. milleflora, B. trimera, and B. uncinella volatile extracts. The three species showed a high degree of similarity in their volatile composition, which was characterized by the presence of high contents of sesquiterpene compounds, in particular of spathulenol. The second group comprised the extract of B. tridentata, which contained α-pinene, ß-pinene, limonene, and (E)-ß-ocimene in high amounts.


Asunto(s)
Baccharis/química , Odorantes/análisis , Extractos Vegetales/química , Compuestos Orgánicos Volátiles/análisis , Monoterpenos Acíclicos , Alquenos/análisis , Alquenos/aislamiento & purificación , Monoterpenos Bicíclicos , Compuestos Bicíclicos con Puentes/análisis , Compuestos Bicíclicos con Puentes/aislamiento & purificación , Análisis por Conglomerados , Ciclohexenos/análisis , Ciclohexenos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Limoneno , Monoterpenos/análisis , Monoterpenos/aislamiento & purificación , Análisis de Componente Principal , Terpenos/análisis , Terpenos/aislamiento & purificación , Compuestos Orgánicos Volátiles/aislamiento & purificación
16.
Int J Food Microbiol ; 415: 110631, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38402671

RESUMEN

Hanseniaspora vineae exhibits extraordinary positive oenological characteristics contributing to the aroma and texture of wines, especially by its ability to produce great concentrations of benzenoid and phenylpropanoid compounds compared with conventional Saccharomyces yeasts. Consequently, in practice, sequential inoculation of H. vineae and Saccharomyces cerevisiae allows to improve the aromatic quality of wines. In this work, we evaluated the impact on wine aroma produced by increasing the concentration of phenylalanine, the main amino acid precursor of phenylpropanoids and benzenoids. Fermentations were carried out using a Chardonnay grape juice containing 150 mg N/L yeast assimilable nitrogen. Fermentations were performed adding 60 mg/L of phenylalanine without any supplementary addition to the juice. Musts were inoculated sequentially using three different H. vineae strains isolated from Uruguayan vineyards and, after 96 h, S. cerevisiae was inoculated to complete the process. At the end of the fermentation, wine aromas were analysed by both gas chromatography-mass spectrometry and sensory evaluation through a panel of experts. Aromas derived from aromatic amino acids were differentially produced depending on the treatments. Sensory analysis revealed more floral character and greater aromatic complexity when compared with control fermentations without phenylalanine added. Moreover, fermentations performed in synthetic must with pure H. vineae revealed that even tyrosine can be used in absence of phenylalanine, and phenylalanine is not used by this yeast for the synthesis of tyrosine derivatives.


Asunto(s)
Hanseniaspora , Vino , Vino/análisis , Fermentación , Saccharomyces cerevisiae/metabolismo , Odorantes/análisis , Fenilalanina/análisis , Fenilalanina/metabolismo , Hanseniaspora/metabolismo , Tirosina/análisis , Tirosina/metabolismo
17.
Food Res Int ; 164: 112349, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737939

RESUMEN

Even beer being the most consumed alcoholic beverage around the world, there is not enough information generated for craft beers produced in Latin America, for either volatile profiles or physicochemical studies. In this work, the chemical and volatile components of ten commercial Blond Ale and nine Indian Pale Ale (IPA) beers from the Uruguayan market were studied using GC-MS. Principal component analysis applied to the data allowed differentiation among the two groups of samples while the volatile compounds and physicochemical parameters responsible for these differences were identified. The physicochemical properties revealed a great diversity between all beer samples even within the same beer style. The main significant differences were obtained for alcohol, polyphenols, bitterness, colour, and pH. Most Blond Ale beer samples were differentiated from IPA ones by raw fermentation aroma compounds such as 1-pentanol, 1-hexanol, hexanoic and isobutyric acids, 4-vinyl guaiacol, and 5,5-dimethyl-2(5H)-furanone. This is the first work that contributes to the knowledge of Uruguayan craft beers. The study also showed the ability of most of the Uruguayan microbreweries to brew Blond Ale and IPA craft beer styles that meet international standards for physicochemical quality.


Asunto(s)
Cerveza , Polifenoles , Cerveza/análisis , Uruguay , Polifenoles/análisis , Cromatografía de Gases y Espectrometría de Masas , Gusto
18.
J Ethnopharmacol ; 302(Pt A): 115889, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36334817

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lauraceae family includes Nectandra angustifolia a species widely used in the folk medicine of South America against various maladies. It is commonly used to treat different types of processes like inflammation, pain, and snakebites. Snakes of the Bothrops genus are responsible for about 97% of the ophidic accidents in northeastern Argentina. AIM OF THE STUDY: To evaluate the anti-snake activity of the phytochemicals present in N. angustifolia extracts, identify the compounds, and evaluate their inhibitory effect on phospholipase A2 (PLA2) with in vitro and in silico assays. METHODS: Seasonal variations in the alexiteric potential of aqueous, ethanolic and hexanic extracts were evaluated by inhibition of coagulant, haemolytic, and cytotoxic effects of B. diporus venom. The chemical identity of an enriched fraction obtained by bio-guided fractioning was established by UPLC-MS/MS analysis. Molecular docking studies were carried out to investigate the binding mechanisms of the identified compounds to PLA2 enzyme from snake venom. RESULTS: All the extracts inhibited venom coagulant activity. However, spring ethanolic extract achieved 100% inhibition of haemolytic activity. Bio-guide fractioning led to an enriched fraction (F4) with the highest haemolytic inhibition. Five flavonoids were identified in this fraction; molecular docking and Molecular Dynamics (MD) simulations indicated the binding mechanisms of the identified compounds. The carbohydrates present in some of the compounds had a critical effect on the interaction with PLA2. CONCLUSION: This study shows, for the first time, which compounds are responsible for the anti-snake activity in Nectandra angustifolia based on in vitro and in silico assays. The results obtained in this work support the traditional use of this species as anti-snake in folk medicine.


Asunto(s)
Bothrops , Venenos de Crotálidos , Lauraceae , Animales , Flavonoides/farmacología , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Extractos Vegetales/uso terapéutico , Espectrometría de Masas en Tándem , Bothrops/fisiología , Fosfolipasas A2/metabolismo
19.
Front Nutr ; 10: 1241105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37743913

RESUMEN

Grape pomace, the main by-product of wine process, shows high potential for the development of functional foods, being a natural source of bioactive compounds and dietary fiber. Thus, the present study proposes the development of five potential functional biscuits. The five formulations were achieved by varying the Tannat grape pomace powder (TGP, 10-20% w/w total wet dough) and sweetener sucralose (2-4% w/w total wet dough) content through a factorial design with central points. TGP microbiological and pesticides analysis were performed as a food safety requirement. Identification of bioactive compounds by HPLC-DAD-MS, in vitro bioactivity (total phenol content, antioxidant by ABTS and ORAC-FL, antidiabetic and antiobesity by inhibition of α-glucosidase and pancreatic lipase, respectively) and sensory properties of the biscuits were evaluated. TGP microbiological and pesticides showed values within food safety criteria. Sensory profiles of TGP biscuits were obtained, showing biscuits with 20% TGP good sensory quality (7.3, scale 1-9) in a cluster of 37 out of 101 consumers. TGP addition in biscuits had a significant (p < 0.05) effect on total phenolic content (0.893-1.858 mg GAE/g biscuit) and bioactive properties when compared to controls: 11.467-50.491 and 4.342-50.912 µmol TE/g biscuit for ABTS and ORAC-FL, respectively; inhibition of α-glucosidase and pancreatic lipase, IC50 35.572-64.268 and 7.197-47.135 mg/mL, respectively. HPLC-DAD-MS results showed all the identified phenolic compounds in 20/4% biscuit (TGP/sucralose%) were degraded during baking. Malvidin-3-O-(6'-p-coumaroyl) glucoside, (+)-catechin, malvidin-3-O-glucoside, and (-)-epicatechin were the main phenolic compounds (in descendent order of content) found. The bioactive properties could be attributed to the remaining phenolic compounds in the biscuits. In conclusion, TGP biscuits seemed to be a promising functional food with potential for ameliorating oxidative stress, glucose and fatty acids levels with good sensory quality.

20.
Food Chem ; 387: 132927, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421644

RESUMEN

Grape variety, vinification, and ageing are factors conditioning the aroma of a wine, with volatile secondary metabolites responsible for the so-called grape varietal character. Particularly, grape glycosylated norisoprenoids are mostly responsible for the sensory profile of Tannat wines, making relevant the use of fast instrumental tools to evaluate their concentration, allow classifying grapes and defining the optimum maturity for harvest. NIR spectroscopy is a fast, non-destructive technique, which requires minimal sample preparation. However, its quantitative applications need chemometric models for interpretation. In this work, a NIR-ANN calibration was developed to quantify norisoprenoids in Vitis vinifera cv. Tannat grapes during maturation and harvesting. Glycosidated norisoprenoids were determined by GC-MS. The ANN adjustments showed better performance than linear models such as PLS, while the best calibration was obtained by homogenising grape samples when comparing to grape juice; making possible to fit a model with an error of 146 µg/kg.


Asunto(s)
Vitis , Compuestos Orgánicos Volátiles , Vino , Frutas/química , Redes Neurales de la Computación , Norisoprenoides/análisis , Espectroscopía Infrarroja Corta , Vitis/química , Compuestos Orgánicos Volátiles/análisis , Vino/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA