Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
BMC Biol ; 21(1): 275, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017456

RESUMEN

BACKGROUND: Many organisms rely on mineral nutrients taken directly from the soil or aquatic environment, and therefore, developed mechanisms to cope with the limitation of a given essential nutrient. For example, photosynthetic cells have well-defined responses to phosphate limitation, including the replacement of cellular membrane phospholipids with non-phosphorous lipids. Under phosphate starvation, phospholipids in extraplastidial membranes are replaced by betaine lipids in microalgae. In higher plants, the synthesis of betaine lipid is lost, driving plants to other strategies to cope with phosphate starvation where they replace their phospholipids by glycolipids. RESULTS: The aim of this work was to evaluate to what extent betaine lipids and PC lipids share physicochemical properties and could substitute for each other. By neutron diffraction experiments and dynamic molecular simulation of two synthetic lipids, the dipalmitoylphosphatidylcholine (DPPC) and the dipalmitoyl-diacylglyceryl-N,N,N-trimethylhomoserine (DP-DGTS), we found that DP-DGTS bilayers are thicker than DPPC bilayers and therefore are more rigid. Furthermore, DP-DGTS bilayers are more repulsive, especially at long range, maybe due to unexpected unscreened electrostatic contribution. Finally, DP-DGTS bilayers could coexist in the gel and fluid phases. CONCLUSION: The different properties and hydration responses of PC and DGTS provide an explanation for the diversity of betaine lipids observed in marine organisms and for their disappearance in seed plants.


Asunto(s)
Betaína , Membrana Dobles de Lípidos , Triglicéridos , Fosfolípidos , Semillas , Fosfatos
2.
J Lipid Res ; 64(5): 100356, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36948272

RESUMEN

Omega-O-acyl ceramides such as 32-linoleoyloxydotriacontanoyl sphingosine (Cer[EOS]) are essential components of the lipid skin barrier, which protects our body from excessive water loss and the penetration of unwanted substances. These ceramides drive the lipid assembly to epidermal-specific long periodicity phase (LPP), structurally much different than conventional lipid bilayers. Here, we synthesized Cer[EOS] with selectively deuterated segments of the ultralong N-acyl chain or deuterated or 13C-labeled linoleic acid and studied their molecular behavior in a skin lipid model. Solid-state 2H NMR data revealed surprising molecular dynamics for the ultralong N-acyl chain of Cer[EOS] with increased isotropic motion toward the isotropic ester-bound linoleate. The sphingosine moiety of Cer[EOS] is also highly mobile at skin temperature, in stark contrast to the other LPP components, N-lignoceroyl sphingosine acyl, lignoceric acid, and cholesterol, which are predominantly rigid. The dynamics of the linoleic chain is quantitatively described by distributions of correlation times and using dynamic detector analysis. These NMR results along with neutron diffraction data suggest an LPP structure with alternating fluid (sphingosine chain-rich), rigid (acyl chain-rich), isotropic (linoleate-rich), rigid (acyl-chain rich), and fluid layers (sphingosine chain-rich). Such an arrangement of the skin barrier lipids with rigid layers separated with two different dynamic "fillings" i) agrees well with ultrastructural data, ii) satisfies the need for simultaneous rigidity (to ensure low permeability) and fluidity (to ensure elasticity, accommodate enzymes, or antimicrobial peptides), and iii) offers a straightforward way to remodel the lamellar body lipids into the final lipid barrier.


Asunto(s)
Ácido Linoleico , Simulación de Dinámica Molecular , Esfingosina/análisis , Piel/química , Epidermis , Ceramidas/química
3.
Phys Chem Chem Phys ; 25(24): 16273-16287, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37305972

RESUMEN

Archaeal membrane lipids have specific structures that allow Archaea to withstand extreme conditions of temperature and pressure. In order to understand the molecular parameters that govern such resistance, the synthesis of 1,2-di-O-phytanyl-sn-glycero-3-phosphoinositol (DoPhPI), an archaeal lipid derived from myo-inositol, is reported. Benzyl protected myo-inositol was first prepared and then transformed to phosphodiester derivatives using a phosphoramidite based-coupling reaction with archaeol. Aqueous dispersions of DoPhPI alone or mixed with DoPhPC can be extruded and form small unilamellar vesicles, as detected by DLS. Neutron, SAXS, and solid-state NMR demonstrated that the water dispersions could form a lamellar phase at room temperature that then evolves into cubic and hexagonal phases with increasing temperature. Phytanyl chains were also found to impart remarkable and nearly constant dynamics to the bilayer over wide temperature ranges. All these new properties of archaeal lipids are proposed as providers of plasticity and thus means for the archaeal membrane to resist extreme conditions.


Asunto(s)
Archaea , Lípidos de la Membrana , Archaea/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Lípidos de la Membrana/química , Inositol
4.
Phys Chem Chem Phys ; 24(24): 15083-15090, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35698855

RESUMEN

Modern phospholipid membranes are known to be in a functional, physiological state, corresponding to the liquid crystalline phase, only under very precise external conditions. The phase is characterised by specific lipid motions, which seem mandatory to permit sufficient flexibility and stability for the membrane. It can be assumed that similar principles hold for proto-membranes at the origin of life although they were likely composed of simpler, single chain fatty acids and alcohols. In the present study we investigated molecular motions of four types of model membranes to shed light on the variations of dynamics and structure from low to high temperature as protocells might have existed close to hot vents. We find a clear hierarchy among the flexibilities of the samples, where some structural parameters seem to depend on the lipid type used while others do not.


Asunto(s)
Células Artificiales , Fosfolípidos , Calor , Membrana Dobles de Lípidos/química , Movimiento (Física) , Fosfolípidos/química , Temperatura
5.
Biophys J ; 118(7): 1602-1611, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32097623

RESUMEN

Membrane-bound oligosaccharides with specific chemistries are known to promote tight adhesion between adjacent membranes via the formation of weak saccharide bonds. However, in the literature, one can find scattered evidence that other, more abundant saccharide chemistries exhibit similar behavior. Here, the influence of various glycolipids on the interaction between adjacent membranes is systematically investigated with the help of small- and wide-angle x-ray scattering and complementary neutron diffraction experiments. Added electrostatic repulsion between the membrane surfaces is used to identify the formation of saccharide bonds and to challenge their stability against tensile stress. Some of the saccharide headgroup types investigated are able to bind adjacent membranes together, but this ability has no significant influence on the membrane bending rigidity. Our results indicate that glycolipid-mediated membrane adhesion is a highly abundant phenomenon and therefore potentially of great biological relevance.


Asunto(s)
Carbohidratos , Glucolípidos , Membranas , Difracción de Neutrones , Oligosacáridos
6.
Langmuir ; 36(26): 7375-7382, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32515591

RESUMEN

Archaea synthesize methyl-branched, ether phospholipids, which confer the archaeal membrane exceptional physicochemical properties. A novel membrane organization was proposed recently to explain the thermal and high pressure tolerance of the polyextremophilic archaeon Thermococcus barophilus. According to this theoretical model, apolar molecules could populate the midplane of the bilayer and could alter the physicochemical properties of the membrane, among which is the possibility to form membrane domains. We tested this hypothesis using neutron diffraction on a model archaeal membrane composed of two archaeal diether lipids with phosphocholine and phosphoethanolamine headgroups in the presence of the apolar polyisoprenoid squalane. We show that squalane is inserted in the midplane at a maximal concentration between 5 and 10 mol % and that squalane can modify the lateral organization of the membrane and induces the coexistence of separate phases. The lateral reorganization is temperature- and squalane concentration-dependent and could be due to the release of lipid chain frustration and the induction of a negative curvature in the lipids.


Asunto(s)
Archaea , Membrana Dobles de Lípidos , Fosfolípidos , Escualeno/análogos & derivados
7.
Langmuir ; 36(45): 13516-13526, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33146533

RESUMEN

Origin of life scenarios generally assume an onset of cell formation in terrestrial hot springs or in the deep oceans close to hot vents, where energy was available for non-enzymatic reactions. Membranes of the protocells had therefore to withstand extreme conditions different from what is found on the Earth surface today. We present here an exhaustive study of temperature stability up to 80 °C of vesicles formed by a mixture of short-chain fatty acids and alcohols, which are plausible candidates for membranes permitting the compartmentalization of protocells. We confirm that the presence of alcohol has a strong structuring and stabilizing impact on the lamellar structures. Moreover and most importantly, at a high temperature (> 60 °C), we observe a conformational transition in the vesicles, which results from vesicular fusion. Because all the most likely environments for the origin of life involve high temperatures, our results imply the need to take into account such a transition and its effect when studying the behavior of a protomembrane model.

8.
Langmuir ; 36(34): 10270-10278, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32816488

RESUMEN

Understanding the structure of the stratum corneum (SC) is essential to understand the skin barrier process. The long periodicity phase (LPP) is a unique trilayer lamellar structure located in the SC. Adjustments in the composition of the lipid matrix, as in many skin abnormalities, can have severe effects on the lipid organization and barrier function. Although the location of individual lipid subclasses has been identified, the lipid conformation at these locations remains uncertain. Contrast variation experiments via small-angle neutron diffraction were used to investigate the conformation of ceramide (CER) N-(tetracosanoyl)-sphingosine (NS) within both simplistic and porcine mimicking LPP models. To identify the lipid conformation of the twin chain CER NS, the chains were individually deuterated, and their scattering length profiles were calculated to identify their locations in the LPP unit cell. In the repeating trilayer unit of the LPP, the acyl chain of CER NS was located in the central and outer layers, while the sphingosine chain was located exclusively in the middle of the outer layers. Thus, for the CER NS with the acyl chain in the central layer, this demonstrates an extended conformation. Electron density distribution profiles identified that the lipid structure remains consistent regardless of the lipid's lateral packing phase, this may be partially due to the anchoring of the extended CER NS. The presented results provide a more detailed insight on the internal arrangement of the LPP lipids and how they are expected to be arranged in healthy skin.


Asunto(s)
Ceramidas , Esfingosina , Animales , Epidermis , Lípidos , Piel , Porcinos
9.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155764

RESUMEN

Archaea, the most extremophilic domain of life, contain ether and branched lipids which provide extraordinary bilayer properties. We determined the structural characteristics of diether archaeal-like phospholipids as functions of hydration and temperature by neutron diffraction. Hydration and temperature are both crucial parameters for the self-assembly and physicochemical properties of lipid bilayers. In this study, we detected non-lamellar phases of archaeal-like lipids at low hydration levels, and lamellar phases at levels of 90% relative humidity or more exclusively. Moreover, at 90% relative humidity, a phase transition between two lamellar phases was discernible. At full hydration, lamellar phases were present up to 70ᵒC and no phase transition was observed within the temperature range studied (from 25 °C to 70 °C). In addition, we determined the neutron scattering length density and the bilayer's structural parameters from different hydration and temperature conditions. At the highest levels of hydration, the system exhibited rearrangements on its corresponding hydrophobic region. Furthermore, the water uptake of the lipids examined was remarkably high. We discuss the effect of ether linkages and branched lipids on the exceptional characteristics of archaeal phospholipids.


Asunto(s)
Archaea/fisiología , Membrana Dobles de Lípidos/química , Transición de Fase , Fosfolípidos/química , Temperatura , Agua/metabolismo , Difracción de Neutrones
10.
J Am Chem Soc ; 140(36): 11261-11266, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30119598

RESUMEN

Water molecules confined in a nanocavity possess distinctly different characteristics from those in bulk, yet the preparation of such nanocavities is still a major experimental challenge. We report here a self-assembled vesicle of an anionic perfluoroalkylated [60]fullerene, unique for its outstanding stability and water tightness, containing water not bound to the membranes. Small-angle neutron scattering revealed that a vesicle of 14 nm outer radius contains a 2 nm thick fullerene bilayer, inside of which is a 3 nm thick membrane-bound water and unbound water in the 4 nm innermost cavity. The vesicle shows astonishingly low water permeability that is 6 to 9 orders of magnitude smaller than that of a lipid vesicle. As a result, a single vesicle isolated on a substrate can retain the interior water in air or even under high vacuum, indicating that the vesicle cavity provides a new tool for physicochemical studies of confined water as well as ions and molecules dissolved in it.

11.
Biochim Biophys Acta Biomembr ; 1859(5): 910-916, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28153495

RESUMEN

The aim of this study is to investigate the interactions between TAT peptides and a neutral DOPC bilayer by using neutron lamellar diffraction. The distribution of TAT peptides and the perturbation of water distribution across the DOPC bilayer were revealed. When compared to our previous study on an anionic DOPC/DOPS bilayer (X. Chen et al., Biochim Biophys Acta. 2013. 1828 (8), 1982-1988), a much deeper insertion of TAT peptides was found in the hydrophobic core of DOPC bilayer at a depth of 6.0Å from the center of the bilayer, a position close to the double bond of fatty acyl chain. We conclude that the electrostatic attractions between the positively charged TAT peptides and the negatively charged headgroups of phospholipid are not essential for the direct translocation. Furthermore, the interactions of TAT peptides with the DOPC bilayer were found to vary in a concentration-dependent manner. A limited number of peptides first associate with the phosphate moieties on the lipid headgroups by using the guanidinium ions pairing. Then the energetically favorable water defect structures are adopted to maintain the arginine residues hydrated by drawing water molecules and lipid headgroups into the bilayer core. Such bilayer deformations consequently lead to the deep intercalation of TAT peptides into the bilayer core. Once a threshold concentration of TAT peptide in the bilayer is reached, a significant rearrangement of bilayer will happen and steady-state water pores will form.


Asunto(s)
Productos del Gen tat/química , Membrana Dobles de Lípidos/química , Difracción de Neutrones/métodos , Fosfatidilcolinas/química , Interacciones Hidrofóbicas e Hidrofílicas
12.
Langmuir ; 33(36): 9211-9221, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28819979

RESUMEN

The stratum corneum (SC) is the outermost layer of the skin and is composed of a multilayered assembly of mostly ceramids (Cer), free fatty acids, cholesterol (Chol), and cholesterol sulfate (Chol-S). Because of the tight packing of these lipids, the SC features unique barrier properties defending the skin from environmental influences. Under pathological conditions, where the skin barrier function is compromised, topical application of molecules that rigidify the SC may lead to a restored barrier function. To this end, molecules are required that incorporate into the SC and bring back the original rigidity of the skin barrier. Here, we investigated the influence of a novel dimeric ceramide (dim-Cer) molecule designed to feature a long, rigid hydrocarbon chain ideally suited to forming an orthorhombic lipid phase. The influence of this molecules on the thermotropic phase behavior of a SC mixture consisting of Cer[AP18] (55 wt %), cholesterol (Chol, 25 wt %), steric acid (SA, 15 wt %), and cholesterol sulfate (Chol-S, 5 wt %) was studied using a combination of neutron diffraction and 2H NMR spectroscopy. These methods provide detailed insights into the packing properties of the lipids in the SC model mixture. Dim-Cer remains in an all-trans state of the membrane-spanning lipid chain at all investigated temperatures, but the influence on the phase behavior of the other lipids in the mixture is marginal. Biophysical experiments are complemented by permeability measurements in model membranes and human skin. The latter, however, indicates that dim-Cer only partially provides the desired effect on membrane permeability, necessitating further optimization of its structure for medical applications.

13.
Eur Phys J E Soft Matter ; 39(4): 48, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27112937

RESUMEN

Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.


Asunto(s)
Dimiristoilfosfatidilcolina/química , Elasticidad , Simulación de Dinámica Molecular , Difracción de Neutrones , Transición de Fase , Membrana Dobles de Lípidos/química , Conformación Molecular
14.
Biophys J ; 108(11): 2670-9, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26039168

RESUMEN

The lipid matrix of the skin's stratum corneum plays a key role in the barrier function, which protects the body from desiccation. The lipids that make up this matrix consist of ceramides, cholesterol, and free fatty acids, and can form two coexisting crystalline lamellar phases: the long periodicity phase (LPP) and the short periodicity phase (SPP). To fully understand the skin barrier function, information on the molecular arrangement of the lipids in the unit cell of these lamellar phases is very desirable. To determine this arrangement in previous studies, we examined the molecular arrangement of the SPP. In this study, neutron diffraction studies were performed to obtain information on the molecular arrangement of the LPP. The diffraction pattern reveals nine diffraction orders attributed to the LPP with a repeating unit of 129.4 ± 0.5 Å. Using D2O/H2O contrast variation, the scattering length density profiles were calculated for protiated samples and samples that included either the perdeuterated acyl chain of the most abundant ceramide or the most abundant perdeuterated fatty acid. Both perdeuterated chains are predominantly located in the central part of the unit cell with substantial interdigitation of the acyl chains in the unit cell center. However, a fraction of the perdeuterated chains is also located near the border of the unit cell with their acyl chains directing toward the center. This arrangement of lipids in the LPP unit cell corresponds with the location of their lipid headgroups at the border and also inside of the unit cell at a well-defined position (±21 Å from the unit cell center), indicative of a three-layer lipid arrangement within the 129.4 ± 0.5 Å repeating unit.


Asunto(s)
Ceramidas/metabolismo , Células Epidérmicas , Ácidos Grasos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Epidermis/metabolismo , Humanos , Difracción de Neutrones , Agua/metabolismo
15.
Biophys J ; 109(7): 1387-97, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26445439

RESUMEN

The radial component is a network of interlamellar tight junctions (TJs) unique to central nervous system myelin. Ablation of claudin-11, a TJ protein, results in the absence of the radial component and compromises the passive electrical properties of myelin. Although TJs are known to regulate paracellular diffusion, this barrier function has not been directly demonstrated for the radial component, and some evidence suggests that the radial component may also mediate adhesion between myelin membranes. To investigate the physical properties of claudin-11 TJs, we compared fresh, unfixed Claudin 11-null and control nerves using x-ray and neutron diffraction. In Claudin 11-null tissue, we detected no changes in myelin structure, stability, or membrane interactions, which argues against the notion that myelin TJs exhibit significant adhesive properties. Moreover, our osmotic stressing and D2O-H2O exchange experiments demonstrate that myelin lacking claudin-11 is more permeable to water and small osmolytes. Thus, our data indicate that the radial component serves primarily as a diffusion barrier and elucidate the mechanism by which TJs govern myelin function.


Asunto(s)
Claudinas/metabolismo , Vaina de Mielina/metabolismo , Uniones Estrechas/metabolismo , Animales , Fenómenos Biomecánicos , Membrana Celular/metabolismo , Claudinas/genética , Difusión , Ratones Noqueados , Difracción de Neutrones , Nervio Óptico/citología , Nervio Óptico/metabolismo , Nervio Ciático/citología , Nervio Ciático/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Agua/metabolismo , Difracción de Rayos X
16.
FASEB J ; 28(8): 3373-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24736411

RESUMEN

Thylakoid membranes, the universal structure where photosynthesis takes place in all oxygenic photosynthetic organisms from cyanobacteria to higher plants, have a unique lipid composition. They contain a high fraction of 2 uncharged glycolipids, the galactoglycerolipids mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), and an anionic sulfolipid, sulfoquinovosediacylglycerol (SQDG). A remarkable feature of the evolution from cyanobacteria to higher plants is the conservation of MGDG, DGDG, SQDG, and phosphatidylglycerol (PG), the major phospholipid of thylakoids. Using neutron diffraction on reconstituted thylakoid lipid extracts, we observed that the thylakoid lipid mixture self-organizes as a regular stack of bilayers. This natural lipid mixture was shown to switch from hexagonal II toward lamellar phase on hydration. This transition and the observed phase coexistence are modulated by the fine-tuning of the lipid profile, in particular the MGDG/DGDG ratio, and by the hydration. Our analysis highlights the critical role of DGDG as a contributing component to the membrane stacking via hydrogen bonds between polar heads of adjacent bilayers. DGDG interactions balance the repulsive electrostatic contribution of the charged lipids PG and SQDG and allow the persistence of regularly stacked membranes at high hydration. In developmental contexts or in response to environmental variations, these properties can contribute to the highly dynamic flexibility of plastid structure.


Asunto(s)
Glucolípidos/fisiología , Lípidos de la Membrana/fisiología , Tilacoides/ultraestructura , Adaptación Fisiológica , Frío , Sequías , Galactolípidos/química , Galactolípidos/fisiología , Glucolípidos/química , Enlace de Hidrógeno , Membrana Dobles de Lípidos , Lípidos de la Membrana/química , Lípidos de la Membrana/aislamiento & purificación , Difracción de Neutrones , Fosfatidilgliceroles/química , Fosfatidilgliceroles/fisiología , Desarrollo de la Planta , Hojas de la Planta/química , Hojas de la Planta/ultraestructura , Salinidad , Spinacia oleracea , Electricidad Estática , Relación Estructura-Actividad , Tilacoides/química , Agua
17.
Langmuir ; 31(33): 9134-41, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26225718

RESUMEN

Understanding sugar-lipid interactions during desiccation and freezing is an important step in the elucidation of cryo- and anhydro-protection mechanisms. We determine sucrose, trehalose, and water concentration distributions in intra-bilayer volumes between opposing dioleoylphosphatidylcholine bilayers over a range of reduced hydrations and sugar concentrations. Stacked lipid bilayers at reduced hydration provide a suitable system to mimic environmental dehydration effects, as well as a suitable system for direct probing of sugar locations by neutron membrane diffraction. Sugar distributions show that sucrose and trehalose both behave as typical uncharged solutes, largely excluded from the lipid bilayers regardless of sugar identity, and with no correlation between sugar distribution and the lipid headgroup position as the hydration is changed. These results are discussed in terms of current opinions about cryo- and anhydro-protection mechanisms.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Sacarosa/química
18.
Langmuir ; 31(16): 4779-90, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25840116

RESUMEN

Particles consisting of a glassy poly(methyl methacrylate) core (ca. 40 nm in radius) decorated with a poly(N-isopropylacrylamide) anionic corona are synthesized using either methacrylic acid (MA) or acrylic acid (AA) as reactive comonomers in the shell. The different reactivity ratios of MA and AA toward N-isopropylacrylamide originates p(MA-N) and p(N-AA) particles with carboxylate charges supposedly located, preferentially, in the close vicinity of the core and at the shell periphery, respectively. The corresponding swelling features of these nanoparticles are addressed over a broad range of pH values (4 to 7.5), NaNO3 concentrations (3 to 200 mM), and temperatures (15 to 45 °C) by dynamic light scattering (DLS) and small angle neutron scattering (SANS). DLS shows that the swelling of the particle shells increases their thickness from ∼10 to 90 nm with decreasing temperature, ionic strength, or increasing pH, with the effect being more pronounced for p(N-AA) whose lower critical solution temperature is shifted to higher values compared to that of p(MA-N). Potentiometric titration and electrokinetic results further reflect the easier dissociation of carboxyl groups in p(N-AA) and a marked heterogeneous interfacial swelling of the latter with decreasing solution salt content. The DLS response of both particles is attributed to the multiresponsive nature of a peripheral dilute shell, while SANS only probes the presence of a quasi-solvent-free dense polymer layer, condensed on the core surface. The thickness of that layer slightly increases from ∼6 to 9.5 nm with increasing temperature from 15 to 45 °C (at 15 mM NaNO3 and pH 5) due to the collapse of the outer dilute shell layer. Overall, results evidence a nonideal brush behavior of p(MA-N) and p(N-AA) and their microphase segregated shell structure, which supports some of the conclusions recently formulated from approximate self-consistent mean-field computations.

19.
J Chem Phys ; 142(15): 154907, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25903910

RESUMEN

The mechanical properties of multilayer stacks of Gb3 glycolipid that play key roles in metabolic disorders (Fabry disease) were determined quantitatively by using specular and off-specular neutron scattering. Because of the geometry of membrane stacks deposited on planar substrates, the scattered intensity profile was analyzed in a 2D reciprocal space map as a function of in-plane and out-of-plane scattering vector components. The two principal mechanical parameters of the membranes, namely, bending rigidity and compression modulus, can be quantified by full calculation of scattering functions with the aid of an effective cut-off radius that takes the finite sample size into consideration. The bulkier "bent" Gb3 trisaccharide group makes the membrane mechanics distinctly different from cylindrical disaccharide (lactose) head groups and shorter "bent" disaccharide (gentiobiose) head groups. The mechanical characterization of membranes enriched with complex glycolipids has high importance in understanding the mechanisms of diseases such as sphingolipidoses caused by the accumulation of non-degenerated glycosphingolipids in lysosomes or inhibition of protein synthesis triggered by the specific binding of Shiga toxin to Gb3.


Asunto(s)
Glucolípidos/química , Membranas Intracelulares/química , Neutrones , Oligosacáridos/química , Dispersión de Radiación , Glucolípidos/síntesis química , Humanos , Lisosomas/química , Conformación Molecular
20.
Biochim Biophys Acta ; 1828(8): 1982-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23643891

RESUMEN

TAT peptide is one of the best-characterized cell penetrating peptides derived from the transactivator of transcription protein from the human immunodeficiency virus 1. The aim of this study was to investigate the interaction between TAT peptide and partially negatively-charged phospholipid bilayer by using lamellar neutron diffraction. The main findings are the existence of a contiguous water channel across the bilayer in the presence of TAT peptide. Taken in combination with other observations, including thinning of the lipid bilayer, this unambiguously locates the peptide within the lipid bilayer. The interaction of TAT peptide with anionic lipid bilayer, composed of an 80:20 mixture of DOPC and DOPS, takes place at two locations. One is in the peripheral aqueous phase between adjacent bilayers and the second is below the glycerol backbone region of bilayer. A membrane thinning above a peptide concentration threshold (1mol%) was found, as was a contiguous transbilayer water channel at the highest peptide concentration (10mol%). This evidence leads to the suggestion that the toroidal pore model might be involved in the transmembrane of TAT peptide. We interpret the surface peptide distribution in the peripheral aqueous phase to be a massive exclusion of TAT peptide from its intrinsic location below the glycerol backbone region of the bilayer, due to the electrostatic attraction between the negatively-charged headgroups of phospholipids and the positively charged TAT peptides. Finally, we propose that the role that negatively-charged headgroups of DOPS lipids play in the transmembrane of TAT peptide is less important than previously thought.


Asunto(s)
Membrana Celular/metabolismo , Productos del Gen tat/metabolismo , Membrana Dobles de Lípidos/metabolismo , Liposomas , Fragmentos de Péptidos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Membrana Celular/química , Productos del Gen tat/química , Humanos , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Difracción de Neutrones , Fragmentos de Péptidos/química , Fosfatidilcolinas/química , Fosfatidilserinas/química , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA