Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Inorg Chem ; 63(34): 16018-16036, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39133820

RESUMEN

In the technologically important field of anticorrosion coatings, it is imperative to form well-defined and characterized films to protect the metal surface from corrosion. Phosphonate-based corrosion mitigation approaches are currently being exploited. Herein, the synergistic action of alkaline-earth metal ions and two carboxy-diphosphonates, PAIBA [N,N-bis(phosphonomethyl)-2-aminoisobutyric acid] and BPMGLY [N,N-bis(phosphonomethyl)glycine], is explored. Also, a family of four novel hybrid metal phosphonate materials is reported, Mg-PAIBA, Ca-PAIBA, Sr-PAIBA, and Sr-Na-PAIBA, whose topological analysis revealed a variety of underlying networks with the 6,10T9, unc, SP 1-periodic net (4,4)(0,2), and unique topologies. The synergistic metal/carboxy-diphosphonate blends were tested for their anticorrosion performance on carbon steel at preselected concentrations (0.1-1.0 mM) and pH values (4.0-6.0). The results showed an enhanced inhibitory performance in the presence of metal cations at higher concentrations. The inhibition of corrosion at pH 5.0 in the presence of BPMGLY, PAIBA, and their combination with Sr2+ was investigated in detail using electrochemical measurements. Enhanced inhibition was achieved with a 1:1 Sr2+/BPMGLY (or PAIBA) binary system. Polarization curves indicated that the system is a "mixed" inhibitor. This study widens the family of carboxyphosphonate coordination polymers, showing their potential as attractive hybrid coatings with anticorrosion performance.

2.
Anal Chem ; 95(46): 17020-17027, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37923567

RESUMEN

In drug research and development, knowledge of the precise structure of an active ingredient is crucial. However, it is equally important to know the water content of the drug molecule, particularly the number of crystal waters present in its structure. Such knowledge ensures the avoidance of drug dosage and formulation errors since the number of water molecules affects the physicochemical and pharmaceutical properties of the molecule. Several methods have been used for crystal water measurements of organic compounds, of which thermogravimetry and crystallography may be the most common ones. To the best of our knowledge, solution-state NMR spectroscopy has not been used for crystal water determination in deuterium oxide. Quantitative NMR (qNMR) method will be presented in the paper with a comparison of single-crystal X-ray diffraction and thermogravimetric analysis results. The qNMR method for water content measurement is straightforward, reproducible, and accurate, including measurement of 1H NMR spectrum before and after the addition of the analyte compound, and the result can be calculated after integration of the reference compound, analyte, and HDO signals using the given equation. In practical terms, there is no need for weighing the samples under study, which makes it simple and is a clear advantage to the current determination methods. In addition, the crystal structures of two model bisphosphonates used herein are reported: that of monopotassium etidronate dihydrate and monosodium zoledronate trihydrate.

3.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234745

RESUMEN

Bisphosphonates (BPs) are common pharmaceutical treatments used for calcium- and bone-related disorders, the principal one being osteoporosis. Their antiresorptive action is related to their high affinity for hydroxyapatite, the main inorganic substituent of bone. On the other hand, the phosphonate groups on their backbone make them excellent ligands for metal ions. The combination of these properties finds potential application in the utilization of such systems as controlled drug release systems (CRSs). In this work, the third generation BP drug zoledronate (ZOL) was combined with alkaline earth metal ions (e.g., Sr2+ and Ba2+) in an effort to synthesize new materials. These metal-ZOL compounds can operate as CRSs when exposed to appropriate experimental conditions, such as the low pH of the human stomach, thus releasing the active drug ZOL. CRS networks containing Sr2+ or Ba2 and ZOL were physicochemically and structurally characterized and were evaluated for their ability to release the free ZOL drug during an acid-driven hydrolysis process. Various release and kinetic parameters were determined, such as initial rates and release plateau values. Based on the drug release results of this study, there was an attempt to correlate the ZOL release efficiency with the structural features of these CRSs.


Asunto(s)
Conservadores de la Densidad Ósea , Osteoporosis , Conservadores de la Densidad Ósea/uso terapéutico , Calcio , Preparaciones de Acción Retardada/química , Difosfonatos/química , Durapatita/uso terapéutico , Humanos , Imidazoles/química , Osteoporosis/tratamiento farmacológico , Ácido Zoledrónico
4.
Inorg Chem ; 58(17): 11522-11533, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31403791

RESUMEN

The reaction of MoO42- with a number of phosphonic acids [bis(phosphonomethyl)glycine, R,S-hydroxyphosphonoacetic acid, 1-hydroxyethane-1,1-diphosphonic acid, phenylphosphonic acid, aminotris(methylene phosphonic acid), and 1,2-ethylenediphosphonic acid] under oxidizing (H2O2) hydrothermal conditions at low pH leads to rupture of the P-C bond, release of orthophosphate ions, and generation of the octanuclear, phosphate-bridged, polyoxometalate molybdenum cluster (NH4)5[Mo8(OH)2O24(µ8-PO4)](H2O)2 (POMPhos). This cluster has been fully characterized and its structure determined. It was studied as a proton conductor, giving moderate values of σ = 2.13 × 10-5 S·cm-1 (25 °C) and 1.17 × 10-4 S·cm-1 (80 °C) at 95% relative humidity, with Ea = 0.27 eV. The POMPhos cluster was then thermally treated at 310 °C, yielding (NH4)2.6(H3O)0.4(PO4Mo12O36) together with an amorphous impurity containing phosphate and molybdenum oxide. This product was also studied for its proton conductivity properties, giving rise to an impressively high value of σ = 2.43 × 10-3 S·cm-1 (25 °C) and 6.67 × 10-3 S·cm-1 (80 °C) at 95% relative humidity, 2 orders of magnitude higher than those corresponding to the "as-synthesized" solid. The utilization of POMPhos in catalytic reduction of different sulfoxides was also evaluated. POMPhos acts as an efficient homogeneous catalyst for the reduction of diphenyl sulfoxide to diphenyl sulfide, as a model reaction. Pinacol was used as a low-cost, environmentally friendly, and highly efficient reducing agent. The effects of different reaction parameters were investigated, namely the type of solvent and reducing agent, presence of acid promoter, reaction time and temperature, loading of catalyst and pinacol, allowing to achieve up to 84-99% yields of sulfide products under optimized conditions. Substrate scope was tested on the examples of diaryl, alkylaryl, dibenzyl, and dialkyl sulfoxides and excellent product yields were obtained.

5.
Inorg Chem ; 57(17): 10656-10666, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30102028

RESUMEN

The synthesis, structural characterization, topological analysis, proton conductivity, and catalytic properties are reported of two Cu(II)-based compounds, namely a dinuclear Cu(II) complex [Cu2(µ-VPA)2(phen)2(H2O)2]·8H2O (1) (H2VPA = vinylphosphonic acid, phen = 1,10-phenanthroline) and a 1D coordination polymer [Cu(µ-SO4)(phen)(H2O)2]∞ (2). Their structural features and H-bonding interactions were investigated in detail, showing that the metal-organic structures of 1 and 2 are extended by multiple hydrogen bonds to more complex 2D or 1D H-bonded architectures with the kgd [Shubnikov plane net (3.6.3.6)/dual] and SP 1-periodic net (4,4)(0,2) topology, respectively. These nets are primarily driven by the H-bonding interactions involving water ligands and H2O molecules of crystallization; besides, the (H2O)4/(H2O)5 clusters were identified in 1. Both 1 and 2 are moderate proton conductors, with proton conductivity values, σ = 3.65 × 10-6 and 3.94 × 10-6 S·cm-1, respectively (measured at 80 °C and 95% relative humidity). Compounds 1 and 2 are also efficient homogeneous catalysts for the mild oxidative functionalization of C5-C8 cycloalkanes (cyclopentane, cyclohexane, cycloheptane, and cyclooctane), namely for the oxidation by H2O2 to give cyclic alcohols and ketones and the hydrocarboxylation by CO/H2O and S2O82- to the corresponding cycloalkanecarboxylic acids as major products. The catalytic reactions proceed under mild conditions (50-60 °C) in aqueous acetonitrile medium, resulting in up to 34% product yields based on cycloalkane substrate.

6.
Inorg Chem ; 55(15): 7414-24, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27416056

RESUMEN

The synthesis, structural characterization, luminescence properties, and proton conduction performance of a new family of isostructural cationic 2D layered compounds are reported. These have the general formula [Ln(H4NMP)(H2O)2]Cl·2H2O [Ln = La(3+), Pr(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Ho(3+), H6NMP = nitrilotris(methylphosphonic acid)], and contain Cl(-) as the counterion. In the case of Ce(3+), a 1D derivative, [Ce2(H3NMP)2(H2O)4]·4.5H2O, isostructural with the known lanthanum compound has been isolated by simply crystallization at room temperature. The octa-coordinated environment of Ln(3+) in 2D compounds is composed by six oxygen atoms from three different ligands and two oxygens from each bound water. Two of the three phosphonate groups act as both chelating and bridging linkers, while the third phosphonate group acts solely as a bridging moiety. The materials are stable at low relative humidity at less at 170 °C. However, at high relative humidity transform to other chloride-free phases, including the 1D structure. The proton conductivity of the 1D materials varies in a wide range, the highest values corresponding to the La derivative (σ ≈ 2 × 10(-3) S·cm(-1) at RH 95% and 80 °C). A lower proton conductivity, 3 × 10(-4) S·cm(-1), was measured for [Gd(H4NMP)(H2O)2]Cl·2H2O at 80 °C, which remains stable under the work conditions used. Absorption and luminescence spectra were recorded for selected [Ln(H4NMP)(H2O)2]Cl·2H2O compounds. In all of them, the observed transitions are attributed solely to f-f transitions of the lanthanide ions present, as the H4NMP(2-) organic group has no measurable absorption or luminescence properties.

7.
J Am Chem Soc ; 136(11): 4236-44, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24564240

RESUMEN

Mono- and disilicic acids were stabilized by uncharged polyethylene glycols (PEGs) in silica-supersaturated solutions (the starting solution contained 500 ppm/8.3 mM sodium orthosilicate, Na2SiO3·5H2O, expressed as SiO2) at pH = 7, most likely by hydrogen bonding between the silanol groups and -CH2-CH2-O-ether moieties. The stabilization was monitored by measuring molybdate-reactive silica and also by a combination of liquid- and solid-state (29)Si NMR spectroscopy. It depends on PEG concentration (20-100 ppm) and molecular weight (1550-20,000 Da). Two narrow (29)Si NMR signals characteristic for monosilicic acid (Q(0)) and disilicic acid (Q(1)) can be observed in (29)Si NMR spectra of solutions containing PEG 10000 with intensities distinctly higher than the control, that is, in the absence of PEG. Silica-containing precipitates are observed in the presence of PEG, in contrast to the gel formed in the absence of PEG. These precipitates exhibit similar degrees of silica polycondensation as found in the gel as can be seen from the (29)Si MAS NMR spectra. However, the (2)D HETCOR spectra show different (1)H NMR signal shifts: The signal due to H-bonded SiOH/H2O, which is found at 6 ppm in the control, is shifted to ~7 ppm in the PEG-containing precipitate. This indicates the formation of slightly stronger H-bonds than in the control sample, most likely between PEG and the silica species. The presence of PEG in these precipitates is unequivocally proven by (13)C CP MAS NMR spectroscopy. The (13)C signal of PEG significantly shifts and is much narrower in the precipitates as compared to the pristine PEG, indicating that PEG is embedded into the silica or at least bound to its surface (or both), and not phase separated. FT-IR spectra corroborate the above arguments. The H-bonding between silanol and ethereal O perturbs the band positions attributed to vibrations involving the O atom. This work may invoke an alternative way to envision silica species stabilization (prior to biosilica formation) in diatoms by investigating possible scenarios of uncharged biomacromolecules playing a role in biosilica synthesis.


Asunto(s)
Polietilenglicoles/química , Ácido Silícico/química , Enlace de Hidrógeno , Tamaño de la Partícula , Propiedades de Superficie
8.
J Am Chem Soc ; 136(15): 5731-9, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24641594

RESUMEN

We report the synthesis, structural characterization, and functionality (framework interconversions together with proton conductivity) of an open-framework hybrid that combines Ca(2+) ions and the rigid polyfunctional ligand 5-(dihydroxyphosphoryl)isophthalic acid (PiPhtA). Ca2[(HO3PC6H3COOH)2]2[(HO3PC6H3(COO)2H)(H2O)2]·5H2O (Ca-PiPhtA-I) is obtained by slow crystallization at ambient conditions from acidic (pH ≈ 3) aqueous solutions. It possesses a high water content (both Ca coordinated and in the lattice), and importantly, it exhibits water-filled 1D channels. At 75 °C, Ca-PiPhtA-I is partially dehydrated and exhibits a crystalline diffraction pattern that can be indexed in a monoclinic cell with parameters close to the pristine phase. Rietveld refinement was carried out for the sample heated at 75 °C, Ca-PiPhtA-II, using synchrotron powder X-ray diffraction data, which revealed the molecular formula Ca2[(HO3PC6H3COOH)2]2[(HO3PC6H3(COO)2H)(H2O)2]. All connectivity modes of the "parent" Ca-PiPhtA-I framework are retained in Ca-PiPhtA-II. Upon Ca-PiPhtA-I exposure to ammonia vapors (28% aqueous NH3) a new derivative is obtained (Ca-PiPhtA-NH3) containing 7 NH3 and 16 H2O molecules according to elemental and thermal analyses. Ca-PiPhtA-NH3 exhibits a complex X-ray diffraction pattern with peaks at 15.3 and 13.0 Å that suggest partial breaking and transformation of the parent pillared structure. Although detailed structural identification of Ca-PiPhtA-NH3 was not possible, due in part to nonequilibrium adsorption conditions and the lack of crystallinity, FT-IR spectra and DTA-TG analysis indicate profound structural changes compared to the pristine Ca-PiPhtA-I. At 98% RH and T = 24 °C, proton conductivity, σ, for Ca-PiPhtA-I is 5.7 × 10(-4) S·cm(-1). It increases to 1.3 × 10(-3) S·cm(-1) upon activation by preheating the sample at 40 °C for 2 h followed by water equilibration at room temperature under controlled conditions. Ca-PiPhtA-NH3 exhibits the highest proton conductivity, 6.6 × 10(-3) S·cm(-1), measured at 98% RH and T = 24 °C. Activation energies (Ea) for proton transfer in the above-mentioned frameworks range between 0.23 and 0.4 eV, typical of a Grothuss mechanism of proton conduction. These results underline the importance of internal H-bonding networks that, in turn, determine conductivity properties of hybrid materials. It is highlighted that new proton transfer pathways may be created by means of cavity "derivatization" with selected guest molecules resulting in improved proton conductivity.


Asunto(s)
Fosfatos de Calcio/química , Cristalización , Cristalografía por Rayos X , Protones , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier
9.
Cryst Growth Des ; 24(14): 5959-5973, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39044734

RESUMEN

Mineral gypsum (selenite) stones have been used extensively by ancient Cretans in the Minoan Palace of Knossos (Crete, Greece), mostly for building and ornamental purposes. Exposure of mineral gypsum to environmental stresses (temperature fluctuations, rain, air-borne pollutants, soluble salts, etc.) causes solubility-driven degradation, and loss of cohesion of the crystal aggregates, with ensuing aesthetic degradation. In this work, the efficiency of four consolidants for artificial gypsum specimens is presented and evaluated based on drilling resistance measurements [drilling resistance measuring system (DRMS)]. Two of them (commercial names RC-70 and RC-90, RC = Rhodorsil Consolidante) are alkoxysilane-based and they are considered as benchmark consolidants. The other two [3-(trihydroxysilyl)propyl methylphosphonate monosodium salt, TRIMEPHONA, and 3-(trihydroxysilyl)propylamino-diphosphonate, TRIPADIPHOS] are multifunctional consolidants because they possess a self-condensable (after hydrolysis) trihydroxysilyl [-Si(OH)3] moiety and phosphonate groups (one in the former, two in the latter). Consolidants RC-70 and RC-90 exhibit rather low consolidation effectiveness. This is not unexpected, as these are alkoxysilane-based and act simply as "fillers" for the pores of the gypsum. Consolidant TRIMEPHONA demonstrates an enhanced level of consolidation action. This is due to its double functionality, i.e., the presence of an anionic phosphorus-based moiety that anchors onto the gypsum surface, and a condensable silane triol [-Si(OH)3] unit. Consolidant TRIPADIPHOS shows excellent gypsum consolidation features and is much more efficient (per unit concentration) than all other tested consolidants. This is assigned to its better gypsum anchoring ability via surface Ca-complexation. Selected compressive strength studies were performed on gypsum samples treated with the phosphorus-based consolidants, and corroborate the findings from DRMS. To shed further light on possible binding modes of the phosphonate moiety on surface Ca2+ sites in gypsum, two model compounds were synthesized and structurally characterized, Ca-C2D and Ca-C3D (C2D = ethylamino-di(methylenephosphonic acid) and C3D = propylamino-di(methylenephosphonic acid).

10.
Inorg Chem ; 52(15): 8770-83, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23883426

RESUMEN

Two new families of divalent metal hybrid derivatives from the aromatic tetraphosphonic acids 1,4- and 1,3-bis(aminomethyl)benzene-N,N'-bis(methylenephosphonic acid), (H2O3PCH2)2-N-CH2C6H4CH2-N(CH2PO3H2)2 (designated herein as p-H8L and m-H8L) have been synthesized by crystallization at room temperature and hydrothermal conditions. The crystal structures of M[(HO3PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2(H2O)2]·2H2O (M = Mg, Co, and Zn), M-(p-H6L), and M[(HO3PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2]·nH2O (M = Ca, Mg, Co, and Zn and n = 1-1.5), M-(m-H6L), were solved ab initio by synchrotron powder diffraction data using the direct methods and subsequently refined using the Rietveld method. The crystal structure of the isostructural M-(p-H6L) is constituted by organic-inorganic monodimensional chains where the phosphonate moiety acts as a bidentate chelating ligand bridging two metal octahedra. M-(m-H6L) compounds exhibit a 3D pillared open-framework with small 1D channels filled with water molecules. These channels are formed by the pillaring action of the organic ligand connecting adjacent layers through the phosphonate oxygens. Thermogravimetric and X-ray thermodiffraction analyses of M-(p-H6L) showed that the integrity of their crystalline structures is maintained up to 470 K, without significant reduction of water content, while thermal decomposition takes place above 580 K. The utility of M-(p-H6L) (M = Mg and Zn) hybrid materials in corrosion protection was investigated in acidic aqueous solutions. In addition, the impedance data indicate both families of compounds display similar proton conductivities (σ ∼ 9.4 × 10(-5) S·cm(-1), at 98% RH and 297 K), although different proton transfer mechanisms are involved.

11.
ACS Appl Bio Mater ; 6(12): 5563-5581, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37982716

RESUMEN

Bisphosphonate (BP)-based treatments have been extensively prescribed for bone-related conditions, particularly for osteoporosis. Their low bioavailability creates the need for prescribed dosage increase to reach therapeutic levels but generates a plethora of undesirable side effects. A viable approach to alleviating these issues is to design and exploit controlled release strategies. Herein, the controlled release profiles of 15 structurally characterized BPs (actual drugs and structural analogs) were thoroughly studied from tablets containing three (cellulose, lactose, and silica) or two (cellulose, and silica) excipients in human stomach-simulated pH conditions. The BPs were of two types, alkyl-BPs and amino-BPs. Alkyl-BPs included four derivatives of etidronate (acid, disodium, tetra-sodium, and monopotassium forms), medronic acid, and three analogs of etidronate, in which the -CH3 group was replaced by the moieties -H, -CH2CH2CH3, and -CH2CH2CH2CH2CH3. Amino-BPs included the commercial drugs pamidronate, alendronate, neridronate, and ibandronate, as well as three analog compounds. Release curves were constructed based on data taken from 1H NMR peak integration and were expressed as "% BP release" vs time. The controlled release profiles (initial release rate, plateau value, etc.) were correlated with certain structural features (number of hydrogen and metal-oxygen bonds), showing that the molecular and crystal lattice features of each BP profoundly influence its release characteristics. It was concluded that for all BPs, in general, the initial rate became lower as the total number of lattice interactions increased. For the alkyl-BPs elongation of the alkyl side chain seems to decelerate the release. Amino-BPs, in general, show slower release than the alkyl-BPs. No adverse effects of alkyl- and amino-BP drugs on NIH3T3 cell viability were noted.


Asunto(s)
Difosfonatos , Ácido Etidrónico , Ratones , Animales , Humanos , Preparaciones de Acción Retardada/farmacología , Ácido Etidrónico/farmacología , Células 3T3 NIH , Difosfonatos/farmacología , Difosfonatos/química , Celulosa , Dióxido de Silicio
12.
Materials (Basel) ; 16(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37176259

RESUMEN

Bisphosphonate drugs constitute the primary treatment for bone diseases such as Paget's disease and osteoporosis. Despite their effectiveness, they also exhibit severe drawbacks, such as rapid excretion and limited oral bioavailability. High doses are usually administered to counterbalance these drawbacks. Subsequently, side effects are triggered, such as osteonecrosis of the lower jaw and esophageal cancer. Controlled drug release systems may be viable candidates to overcome those issues. Herein, we present novel functionalized silica-based hydrogels loaded with the osteoporosis drug etidronate (1,1-hydroxyethylidene-diphosphonate) used to control the release profile of the drug. Various methodologies were evaluated to control the initial release rate and the final released concentration of the drug. These included the gel density, by systematically increasing the initial concentration of silicate used to prepare the hydrogels, the presence of metal cations (Ca2+ and Cu2+), and the internal surface functionalization of the gel with silane-based grafting agents (with anionic, cationic, and neutral groups). This study also contributes to our continuous effort to develop new a priori programmable drug-loaded gels for the controlled release of osteoporosis drugs.

13.
Inorg Chem ; 51(14): 7889-96, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22746972

RESUMEN

In this paper we report the synthesis and structural characterization of the 2D layered coordination polymer Mg(BPMGLY)(H(2)O)(2) (BPMGLY = bis-phosphonomethylglycine, (HO(3)PCH(2))(2)N(H)COO(2-)). The Mg ion is found in a slightly distorted octahedral environment formed by four phosphonate oxygens and two water molecules. The carboxylate group is deprotonated but noncoordinated. This compound is a useful starting material for a number of topotactic transformations. Upon heating at 140 °C one (of the two) Mg-coordinated water molecule is lost, with the archetype 2D structure maintaining itself. However, the octahedral Mg in Mg(BPMGLY)(H(2)O)(2) is now converted to trigonal bipyramidal in Mg(BPMGLY)(H(2)O). Upon exposure of the monohydrate Mg(BPMGLY)(H(2)O) compound to ammonia, one molecule of ammonia is inserted into the interlayer space and stabilized by hydrogen bonding. The 2D layered structure of the product Mg(BPMGLY)(H(2)O)(NH(3)) is still maintained, with Mg now acquiring a pseudo-octahedral environment. All of these topotactic transformations are also accompanied by changes in hydrogen bonding between the layers.


Asunto(s)
Amoníaco/química , Glicina/química , Magnesio/química , Compuestos Organometálicos/química , Cristalografía por Rayos X , Glicina/análogos & derivados , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Agua/química
14.
Inorg Chem ; 51(21): 11466-77, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23039024

RESUMEN

The (31)P chemical shift tensor of the phosphonate group [RC-PO(2)(OH)](-) is investigated with respect to its principal axis values and its orientation in a local coordinate system (LCS) defined from the P atom and the directly coordinated atoms. For this purpose, six crystalline metal aminotris(methylenephosphonates), MAMP·xH(2)O with M = Zn, Mg, Ca, Sr, Ba, and (2Na) and x = 3, 3, 4.5, 0, 0, and 1.5, respectively, were synthesized and identified by diffraction methods. The crystal structure of water-free BaAMP is described here for the first time. The principal components of the (31)P shift tensor were determined from powders by magic-angle-spinning NMR. Peak assignments and orientations of the chemical shift tensors were established by quantum-chemical calculations from first principles using the extended embedded ion method. Structure optimizations of the H-atom positions were necessary to obtain the chemical shift tensors reliably. We show that the (31)P tensor orientation can be predicted within certain error limits from a well-chosen LCS, which reflects the pseudosymmetry of the phosphonate environment.

15.
Inorg Chem ; 51(14): 7689-98, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22757640

RESUMEN

Multifunctional materials, especially those combining two or more properties of interest, are attracting immense attention due to their potential applications. MOFs, metal organic frameworks, can be regarded as multifunctional materials if they show another useful property in addition to the adsorption behavior. Here, we report a new multifunctional light hybrid, MgH(6)ODTMP·2H(2)O(DMF)(0.5) (1), which has been synthesized using the tetraphosphonic acid H(8)ODTMP, octamethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid), by high-throughput methodology. Its crystal structure, solved by Patterson-function direct methods from synchrotron powder X-ray diffraction, was characterized by a 3D pillared open framework containing cross-linked 1D channels filled with water and DMF. Upon H(2)O and DMF removal and subsequent rehydration, MgH(6)ODTMP·2H(2)O (2) and MgH(6)ODTMP·6H(2)O (3) can be formed. These processes take place through crystalline-quasi-amorphous-crystalline transformations, during which the integrity of the framework is maintained. A water adsorption study, at constant temperature, showed that this magnesium tetraphosphonate hybrid reversibly equilibrates its lattice water content as a function of the water partial pressure. Combination of the structural study and gas adsorption characterization (N(2), CO(2), and CH(4)) indicates an ultramicroporous framework. High-pressure CO(2) adsorption data are also reported. Finally, impedance data indicates that 3 has high proton conductivity σ = 1.6 × 10(-3) S cm(-1) at T = 292 K at ~100% relative humidity with an activation energy of 0.31 eV.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Magnesio/química , Compuestos Organometálicos/química , Ácidos Fosforosos/química , Protones , Conductividad Eléctrica , Modelos Moleculares , Compuestos Organometálicos/síntesis química , Porosidad , Difracción de Polvo , Propiedades de Superficie , Temperatura
16.
IUCrdata ; 7(Pt 3): x220247, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36339798

RESUMEN

The crystal structure of the anionic zinc-[amino-(iminio)meth-yl]phospho-nate one-dimensional coordination polymer, Zn-AIMP, is reported; the negative charge is balanced by an oxidanium cation (H3O+) to give the composition {(H3O)[Zn(CH4N2PO3)3]} n . The building unit of the coordination polymer comprises a divalent Zn2+ cation (site symmetry ..) and three [amino(iminio)meth-yl]phospho-nate mono-anionic ligands (point group symmetry m). The AIMP ligand exists in a zwitterionic form with a total charge -1 as the phospho-nate is fully deprotonated (-PO3 2-), while the amino-(iminio)methyl moiety is protonated (H2N-C-NH2 +).

17.
IUCrdata ; 7(Pt 2): x220189, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36340873

RESUMEN

The new triazole-functionalized phospho-nic acid 5-phenyl-3-(2-phosphono-eth-yl)-1,2,3-triazol-1-ium chloride, C10H13N3O3P+·Cl- (PTEPHCl), was synthesized by the 'click' reaction of the alkyl azide diethyl-(2-azido-eth-yl)phospho-nate with phenyl-acetyl-ene to give the dieth-yl[2-(4-phenyl-1H-1,2,3-triazol-1-yl)eth-yl]phospho-nate ester, which was then hydrolyzed under acidic conditions (HCl) to give the 'free' phospho-nic acid. The use of HCl for the hydrolysis caused protonation of the triazole ring, rendering the compound cationic, charged-balanced by a Cl- anion. There are extensive hydrogen-bonding inter-actions in the structure of PTEPHCl, involving the phospho-nic acid (-PO3H2) group, the triazolium ring and the Cl- anion.

18.
ACS Appl Mater Interfaces ; 14(9): 11273-11287, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35192337

RESUMEN

This work deals with the synthesis and characterization of one-dimensional (1D) imidazole-containing etidronates, [M2(ETID)(Im)3]·nH2O (M = Co2+ and Ni2+; n = 0, 1, 3) and [Zn2(ETID)2(H2O)2](Im)2, as well as the corresponding Co2+/Ni2+ solid solutions, to evaluate their properties as multipurpose materials for energy conversion processes. Depending on the water content, metal ions in the isostructural Co2+ and Ni2+ derivatives are octahedrally coordinated (n = 3) or consist of octahedral together with dimeric trigonal bipyramidal (n = 1) or square pyramidal (n = 0) environments. The imidazole molecule acts as a ligand (Co2+, Ni2+ derivatives) or charge-compensating protonated species (Zn2+ derivative). For the latter, the proton conductivity is determined to be ∼6 × 10-4 S·cm-1 at 80 °C and 95% relative humidity (RH). By pyrolyzing in 5%H2-Ar at 700-850 °C, core-shell electrocatalysts consisting of Co2+-, Ni2+-phosphides or Co2+/Ni2+-phosphide solid solution particles embedded in a N-doped carbon graphitic matrix are obtained, which exhibit improved catalytic performances compared to the non-N-doped carbon materials. Co2+ phosphides consist of CoP and Co2P in variable proportions according to the used precursor and pyrolytic conditions. However, the Ni2+ phosphide is composed of Ni2P exclusively at high temperatures. Exploration of the electrochemical activity of these metal phosphides toward the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) reveals that the anhydrous Co2(ETID)(Im)3 pyrolyzed at 800 °C (CoP/Co2P = 80/20 wt %) is the most active trifunctional electrocatalyst, with good integrated capabilities as an anode for overall water splitting (cell voltage of 1.61 V) and potential application in Zn-air batteries. This solid also displays a moderate activity for the HER with an overpotential of 156 mV and a Tafel slope of 79.7 mV·dec-1 in 0.5 M H2SO4. Ni2+- and Co2+/Ni2+-phosphide solid solutions show lower electrochemical performances, which are correlated with the formation of less active crystalline phases.

19.
Inorg Chem ; 50(21): 11202-11, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21951129

RESUMEN

A family of M-VP (M = Ni, Co, Cd, Mn, Zn, Fe, Cu, Pb; VP = vinylphosphonate) and M-PVP (M = Co, Cd; PVP = phenylvinylphosphonate) materials have been synthesized by hydrothermal methods and characterized by FT-IR, elemental analysis, and thermogravimetric analysis (TGA). Their structures were determined either by single crystal X-ray crystallography or from laboratory X-ray powder diffraction data. The crystal structure of some M-VP and M-PVP materials is two-dimensional (2D) layered, with the organic groups (vinyl or phenylvinyl) protruding into the interlamellar space. However, the Pb-VP and Cu-VP materials show dramatically different structural features. The porous, three-dimensional (3D) structure of Pb-VP contains the Pb center in a pentagonal pyramid. A Cu-VP variant of the common 2D layered structure shows a very peculiar structure. The structure of the material is 2D with the layers based upon three crystallographically distinct Cu atoms; an octahedrally coordinated Cu(2+) atom, a square planar Cu(2+) atom and a Cu(+) atom. The latter has an unusual co-ordination environment as it is 3-coordinated to two oxygen atoms with the third bond across the double bond of the vinyl group. Metal-coordinated water loss was studied by TGA and thermodiffractometry. The rehydration of the anhydrous phases to give the initial phase takes place rapidly for Cd-PVP but it takes several days for Co-PVP. The M-VP materials exhibit variable dehydration-rehydration behavior, with most of them losing crystallinity during the process.

20.
ACS Appl Mater Interfaces ; 13(13): 15279-15291, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33764728

RESUMEN

Phase transformation dynamics and proton conduction properties are reported for cationic layer-featured coordination polymers derived from the combination of lanthanide ions (Ln3+) with nitrilo-tris(methylenephosphonic acid) (H6NMP) in the presence of sulfate ions. Two families of materials are isolated and structurally characterized, i.e., [Ln2(H4NMP)2(H2O)4](HSO4)2·nH2O (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb; n = 4-5, Series I) and [Ln(H5NMP)]SO4·2H2O (Ln = Pr, Nd, Eu, Gd, Tb; Series II). Eu/Tb bimetallic solid solutions are also prepared for photoluminescence studies. Members of families I and II display high proton conductivity (10-3 and 10-2 S·cm-1 at 80 °C and 95% relative humidity) and are studied as fillers for Nafion-based composite membranes in PEMFCs, under operating conditions. Composite membranes exhibit higher power and current densities than the pristine Nafion membrane working in the range of 70-90 °C and 100% relative humidity and with similar proton conductivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA