Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 271: 115981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242046

RESUMEN

To better understand the fate and assess the ingestible fraction of microplastics (by aquatic organisms), it is essential to quantify and characterize of their released from larger items under environmental realistic conditions. However, the current information on the fragmentation and size-based characteristics of released microplastics, for example from bio-based thermoplastics, is largely unknown. The goal of our work was to assess the fragmentation and release of microplastics, under ultraviolet (UV) radiation and in seawater, from polylactic acid (PLA) items, a bio-based polymer, and from polypropylene (PP) items, a petroleum-based polymer. To do so, we exposed pristine items of PLA and PP, immersed in filtered natural seawater, to accelerated UV radiation for 57 and 76 days, simulating 18 and 24 months of mean natural solar irradiance in Europe. Our results indicated that 76-day UV radiation induced the fragmentation of parent plastic items and the microplastics (50 - 5000 µm) formation from both PP and PLA items. The PP samples (48 ± 26 microplastics / cm2) released up to nine times more microplastics than PLA samples (5 ± 2 microplastics / cm2) after a 76-day UV exposure, implying that the PLA tested items had a lower fragmentation rate than PP. The particles' length of released microplastics was parameterized using a power law exponent (α), to assess their size distribution. The obtained α values were 3.04 ± 0.11 and 2.54 ± 0.06 (-) for 76-day UV weathered PP and PLA, respectively, meaning that PLA microplastics had a larger sized microplastics fraction than PP particles. With respect to their two-dimensional shape, PLA microplastics also had lower width-to-length ratio (0.51 ± 0.17) and greater fiber-shaped fractions (16%) than PP microplastics (0.57 ± 0.17% and 11%, respectively). Overall, the bio-based PLA items under study were more resistant to fragmentation and release of microplastics than the petroleum-based PP tested items, and the parameterized characteristics of released microplastics were polymer-dependent. Our work indicates that even though bio-based plastics may have a slower release of fragmented particles under UV radiation compared to conventional polymer types, they still have the potential to act as a source of microplastics in the marine environment, with particles being available to biota within ingestible size fractions, if not removed before major fragmentation processes.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Polipropilenos , Microplásticos , Plásticos , Rayos Ultravioleta , Inmersión , Poliésteres , Agua de Mar , Polímeros , Contaminantes Químicos del Agua/análisis
2.
Polymers (Basel) ; 16(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399939

RESUMEN

Pyrolysis is already an established recycling method to recover the carbon fibers of end-of-life composites. However, the pyrolysis process removes the fiber sizing. Fiber sizing is a critical step in composite material production, influencing adhesion, protection and overall performance. In this study, recycled carbon nonwoven reinforcements made from pyrolyzed carbon fibers were pretreated to improve the mechanical properties of polyamide and polypropylene composites. The pretreatment involved applying specific coatings (sizings) on the nonwoven by spraying. Pretreated and non-pretreated composites were prepared by compression molding to investigate the impact of the fiber pretreatment on the tensile properties and interlaminar shear strength. The tests were performed in the 0° and 90° directions of the composite plate. The results revealed that pretreatment had little effect on the polyamide composites. However, significant improvements were obtained for the polypropylene composites, as an increase of more than 50% in tensile strength was achieved in the 0° direction and more than 35% in the 90° direction. In addition, the interlaminar shear strength increased from 11.9 MPa to 14.3 MPa in the 0° direction and from 14.9 MPa to 17.8 MPa in the 90° direction.

3.
Polymers (Basel) ; 15(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36904425

RESUMEN

The depletion of fossil resources and the growing demand for plastic waste reduction has put industries and academic researchers under pressure to develop increasingly sustainable packaging solutions that are both functional and circularly designed. In this review, we provide an overview of the fundamentals and recent advances in biobased packaging materials, including new materials and techniques for their modification as well as their end-of-life scenarios. We also discuss the composition and modification of biobased films and multilayer structures, with particular attention to readily available drop-in solutions, as well as coating techniques. Moreover, we discuss end-of-life factors, including sorting systems, detection methods, composting options, and recycling and upcycling possibilities. Finally, regulatory aspects are pointed out for each application scenario and end-of-life option. Moreover, we discuss the human factor in terms of consumer perception and acceptance of upcycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA