Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7919): 468-473, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859194

RESUMEN

Quantum many-body systems away from equilibrium host a rich variety of exotic phenomena that are forbidden by equilibrium thermodynamics. A prominent example is that of discrete time crystals1-8, in which time-translational symmetry is spontaneously broken in periodically driven systems. Pioneering experiments have observed signatures of time crystalline phases with trapped ions9,10, solid-state spin systems11-15, ultracold atoms16,17 and superconducting qubits18-20. Here we report the observation of a distinct type of non-equilibrium state of matter, Floquet symmetry-protected topological phases, which are implemented through digital quantum simulation with an array of programmable superconducting qubits. We observe robust long-lived temporal correlations and subharmonic temporal response for the edge spins over up to 40 driving cycles using a circuit of depth exceeding 240 and acting on 26 qubits. We demonstrate that the subharmonic response is independent of the initial state, and experimentally map out a phase boundary between the Floquet symmetry-protected topological and thermal phases. Our results establish a versatile digital simulation approach to exploring exotic non-equilibrium phases of matter with current noisy intermediate-scale quantum processors21.

2.
Cell Mol Life Sci ; 81(1): 170, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597976

RESUMEN

In our prior investigation, we discerned loss-of-function variants within the gene encoding glutamine-rich protein 2 (QRICH2) in two consanguineous families, leading to various morphological abnormalities in sperm flagella and male infertility. The Qrich2 knockout (KO) in mice also exhibits multiple morphological abnormalities of the flagella (MMAF) phenotype with a significantly decreased sperm motility. However, how ORICH2 regulates the formation of sperm flagella remains unclear. Abnormal glutamylation levels of tubulin cause dysplastic microtubules and flagella, eventually resulting in the decline of sperm motility and male infertility. In the current study, by further analyzing the Qrich2 KO mouse sperm, we found a reduced glutamylation level and instability of tubulin in Qrich2 KO mouse sperm flagella. In addition, we found that the amino acid metabolism was dysregulated in both testes and sperm, leading to the accumulated glutamine (Gln) and reduced glutamate (Glu) concentrations, and disorderly expressed genes responsible for Gln/Glu metabolism. Interestingly, mice fed with diets devoid of Gln/Glu phenocopied the Qrich2 KO mice. Furthermore, we identified several mitochondrial marker proteins that could not be correctly localized in sperm flagella, which might be responsible for the reduced mitochondrial function contributing to the reduced sperm motility in Qrich2 KO mice. Our study reveals a crucial role of a normal Gln/Glu metabolism in maintaining the structural stability of the microtubules in sperm flagella by regulating the glutamylation levels of the tubulin and identifies Qrich2 as a possible novel Gln sensor that regulates microtubule glutamylation and mitochondrial function in mouse sperm.


Asunto(s)
Glutamina , Infertilidad Masculina , Animales , Humanos , Masculino , Ratones , Ácido Glutámico , Infertilidad Masculina/genética , Ratones Noqueados , Microtúbulos , Mitocondrias , Proteínas Mitocondriales , Semen , Motilidad Espermática , Espermatozoides , Tubulina (Proteína)
3.
J Hum Genet ; 69(8): 401-409, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769386

RESUMEN

Human infertility affects 10-15% of couples. Asthenozoospermia accounts for 18% of men with infertility and is a common male infertility phenotype. The nexin-dynein regulatory complex (N-DRC) is a large protein complex in the sperm flagellum that connects adjacent doublets of microtubules. Defects in the N-DRC can disrupt cilia/flagellum movement, resulting in primary ciliary dyskinesia and male infertility. Using whole-exome sequencing, we identified a pathological homozygous variant of the dynein regulatory complex subunit 3 (DRC3) gene, which expresses leucine-rich repeat-containing protein 48, a component of the N-DRC, in a patient with asthenozoospermia. The variant ENST00000313838.12: c.644dup (p. Glu216GlyfsTer36) causes premature translational arrest of DRC3, resulting in a dysfunctional DRC3 protein. The patient's semen count, color, and pH were normal according to the reference values of the World Health Organization guidelines; however, sperm motility and progressive motility were reduced. DRC3 protein was not detected in the patient's sperm and the ultrastructure of the patient's sperm flagella was destroyed. More importantly, the DRC3 variant reduced its interaction with other components of the N-DRC, including dynein regulatory complex subunits 1, 2, 4, 5, 7, and 8. Our data not only revealed the essential biological functions of DRC3 in sperm flagellum movement and structure but also provided a new basis for the clinical genetic diagnosis of male infertility.


Asunto(s)
Astenozoospermia , Homocigoto , Infertilidad Masculina , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Motilidad Espermática/genética , Adulto , Espermatozoides/metabolismo , Espermatozoides/patología , Secuenciación del Exoma , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/patología , Dineínas/genética , Dineínas/metabolismo , Mutación
4.
Phys Rev Lett ; 132(15): 150401, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38683009

RESUMEN

Quantum many-body scars are nonthermal excited eigenstates of nonintegrable Hamiltonians, which could support coherent revival dynamics from special initial states when scars form an equally spaced tower in the energy spectrum. For open quantum systems, engineering many-body scarred dynamics by a controlled coupling to the environment remains largely unexplored. Here, we provide a general framework to exactly embed quantum many-body scars into the decoherence-free subspaces of Lindblad master equations. The dissipative scarred dynamics manifest persistent periodic oscillations for generic initial states, and can be practically utilized to prepare scar states with potential quantum metrology applications. We construct the Liouvillian dissipators with the local projectors that annihilate the whole scar towers, and utilize the Hamiltonian part to rotate the undesired states out of the null space of dissipators. We demonstrate our protocol through several typical models hosting many-body scar towers and propose an experimental scheme to observe the dissipative scarred dynamics based on digital quantum simulations and resetting ancilla qubits.

5.
Theor Appl Genet ; 137(7): 171, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918246

RESUMEN

KEY MESSAGE: A Fusarium wilt resistance gene FwS1 on pea chromosome 6 was identified and mapped to a 91.4 kb region by a comprehensive genomic-based approach, and the gene Psat6g003960 harboring NB-ARC domain was identified as the putative candidate gene. Pea Fusarium wilt, incited by Fusarium oxysporum f. sp. pisi (Fop), has always been a devastating disease that causes severe yield losses and economic damage in pea-growing regions worldwide. The utilization of pea cultivars carrying resistance gene is the most efficient approach for managing this disease. In order to finely map resistance gene, F2 populations were established through the cross between Shijiadacaiwan 1 (resistant) and Y4 (susceptible). The resistance genetic analysis indicated that the Fop resistance in Shijiadacaiwan 1 was governed by a single dominant gene, named FwS1. Based on the bulked segregant analysis sequencing analyses, the gene FwS1 was initially detected on chromosome 6 (i.e., linking group II, chr6LG2), and subsequent linkage mapping with 589 F2 individuals fine-mapped the gene FwS1 into a 91.4 kb region. The further functional annotation and haplotype analysis confirmed that the gene Psat6g003960, characterized by a NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain, was considered as the most promising candidate gene. The encoding amino acids were altered by a "T/C" single-nucleotide polymorphism (SNP) in the first exon of the Psat6g003960, and based on this SNP locus, the molecular marker A016180 was determined to be a diagnostic marker for FwS1 by validating its specificity in both pea accessions and genetic populations with different genetic backgrounds. The FwS1 with diagnostic KASP marker A016180 could facilitate marker-assisted selection in resistance pea breeding in pea. In addition, a comparison of the candidate gene Psat6g003960 in 74SN3B and SJ1 revealed the same sequences. This finding indicated that 74SN3B carried the candidate gene for FwS1, suggesting that FwS1 and Fwf may be closely linked or an identical resistant gene against Fusarium wilt.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Fusarium , Genes de Plantas , Pisum sativum , Enfermedades de las Plantas , Fusarium/patogenicidad , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Pisum sativum/genética , Pisum sativum/microbiología , Polimorfismo de Nucleótido Simple , Haplotipos , Marcadores Genéticos , Ligamiento Genético , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
PLoS Biol ; 19(9): e3001386, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499638

RESUMEN

Plasmodium falciparum, the deadliest causal agent of malaria, caused more than half of the 229 million malaria cases worldwide in 2019. The emergence and spreading of frontline drug-resistant Plasmodium strains are challenging to overcome in the battle against malaria and raise urgent demands for novel antimalarial agents. The P. falciparum formate-nitrite transporter (PfFNT) is a potential drug target due to its housekeeping role in lactate efflux during the intraerythrocytic stage. Targeting PfFNT, MMV007839 was identified as a lead compound that kills parasites at submicromolar concentrations. Here, we present 2 cryogenic-electron microscopy (cryo-EM) structures of PfFNT, one with the protein in its apo form and one with it in complex with MMV007839, both at 2.3 Å resolution. Benefiting from the high-resolution structures, our study provides the molecular basis for both the lactate transport of PfFNT and the inhibition mechanism of MMV007839, which facilitates further antimalarial drug design.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Microscopía por Crioelectrón , Formiatos , Ácido Láctico/metabolismo , Malaria Falciparum , Transportadores de Ácidos Monocarboxílicos/química , Nitritos , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Relación Estructura-Actividad
7.
Inorg Chem ; 63(10): 4758-4769, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38408314

RESUMEN

The efficiency of nitrogen mustards (NMs), among the first chemotherapeutic agents against cancer, is limited by their monotonous mechanism of action (MoA). And tumor hypoxia is a significant obstacle in the attenuation of the chemotherapeutic efficacy. To repurpose the drug and combat hypoxia, herein, we constructed an organo-Ir(III) prodrug, IrCpNM, with the composition of a reactive oxygen species (ROS)-inducing moiety (Ir-arene fragment)-a hypoxic responsive moiety (azo linker)-a DNA-alkylating moiety (nitrogen mustard), and realized DNA damage response (DDR)-mediated autophagy for hypoxic lung cancer therapy for the first time. Prodrug IrCpNM could upregulate the level of catalase (CAT) to catalyze the decomposition of excessive H2O2 to O2 and downregulate the expression of the hypoxia-inducible factor (HIF-1α) to relieve hypoxia. Subsequently, IrCpNM initiates the quadruple synergetic actions under hypoxia, as simultaneous ROS promotion and glutathione (GSH) depletion to enhance the redox disbalance and severe oxidative and cross-linking DNA damages to trigger the occurrence of DDR-mediated autophagy via the ATM/Chk2 cascade and the PIK3CA/PI3K-AKT1-mTOR-RPS6KB1 signaling pathway. In vitro and in vivo experiments have confirmed the greatly antiproliferative capacity of IrCpNM against the hypoxic solid tumor. This work demonstrated the effectiveness of the DNA damage-responsive organometallic prodrug strategy with the microenvironment targeting system and the rebirth of traditional chemotherapeutic agents with a new anticancer mechanism.


Asunto(s)
Neoplasias Pulmonares , Profármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Profármacos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Peróxido de Hidrógeno , Hipoxia , Autofagia , Daño del ADN , ADN , Línea Celular Tumoral , Microambiente Tumoral
8.
Inorg Chem ; 63(11): 5235-5245, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38452249

RESUMEN

Cancer treatment has faced severe obstacles due to the smart biological system of cancer cells. Herein, we report a three-in-one agent Ir-CA via attenuation of cancer cell stemness with the down-regulated biomarker CD133 expression from the mitochondria-directed chemotherapy. Over 80% of Ir-CA could accumulate in mitochondria, result in severe mitochondrial dysfunctions, and subsequently initiate mitophagy and cell cycle arrest to kill cisplatin-resistant A549R cells. In vitro and in vivo antimetastatic experiments demonstrated that Ir-CA can effectively inhibit metastasis with down-regulated MMP-2/MMP-9. RNA seq analysis and Western blotting indicated that Ir-CA also suppresses the GSTP1 expression to decrease the intracellular Pt-GS adducts, resulting in the detoxification and resensitization to cisplatin of A549R cells. In vivo evaluation indicated that Ir-CA restrains the tumor growth and has minimal side effects and superior biocompatibility. This work not only provides the first three-in-one agent to attenuate cancer cell stemness and simultaneously realize anticancer, antimetastasis, and conquer metallodrug resistance but also demonstrates the effectiveness of the mitochondria-directed strategy in cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias , Cisplatino/farmacología , Línea Celular Tumoral , Ciclo Celular , Mitocondrias , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Neoplasias/metabolismo
9.
Plant Dis ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803073

RESUMEN

Powdery mildew caused by Erysiphe pisi DC is a global notorious disease on peas. Deploying resistance pea cultivars is the most efficient and environmentally friendly method for the disease control. This study focuses on revealing the resistance genes in three pea germplasms and developing their functional markers for resistance breeding. The identification of resistance genes involved genetic mapping and the sequencing of the PsMLO1 gene. To confirm the hereditary in three reisistant germplasms, they were crossed with susceptible cultivars to generate F1, F2, and F2:3 populations. The F1 generation exhibited susceptibility to E. pisi, while segregation patterns in subsequent generations adhered to the 3:1 (susceptible: resistant) and 1:2:1 (susceptible homozygotes: heterozygotes: resistant homozygotes) ratios, indicating that powdery mildew resistance was governed by single recessive gene in each germplasm. Analysis of er1-linked markers and genetic mapping suggested that the resistance genes could be er1 alleles in these germplasms. The multiple clone sequencing results of the three homologous PsMLO1 genes showed they were novel er1 alleles, named er1-15, er1-16, and er1-17, respectively. The er1-15 and er1-16 were caused by 1-bp deletion at position 335 (A) and 429 (T) in exon 3, respectively, while er1-17 was caused a 1-bp insertion at position 248 in exon 3, causing a frame-shift mutation and premature termination of PsMLO1 protein translation. Their respective functional markers KASP-er1-15, KASP-er1-16 and KASP-er1-17 were successfully developed and validated in respective mapping populations and pea germplasms. These results provide valuable tools for pea breeding resistance to E pisi.

10.
Phys Rev Lett ; 131(2): 020402, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505938

RESUMEN

Quantum many-body scarred systems host nonthermal excited eigenstates immersed in a sea of thermal ones. In cases where exact expressions for these special eigenstates are not known, it is computationally demanding to distinguish them from their exponentially many thermal neighbors. We propose a matrix-product-state (MPS) algorithm, dubbed DMRG-S, to extract such states at system sizes far beyond the scope of exact diagonalization. Using this technique, we obtain scarred eigenstates in Rydberg-blockaded chains of up to 80 sites and perform a finite-size scaling study to address the lingering question of the stability for the Néel state revivals in the thermodynamic limit. Our method also provides a systematic way to obtain exact MPS representations for scarred eigenstates near the target energy without a priori knowledge. In particular, we find several new scarred eigenstates with exact MPS representations in kinetically constrained spin and clock models. The combination of numerical and analytical investigations in our work provides a new methodology for future studies of quantum many-body scars.

11.
PLoS Biol ; 18(8): e3000790, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32776918

RESUMEN

Concentrative nucleoside transporters (CNTs), members of the solute carrier (SLC) 28 transporter family, facilitate the salvage of nucleosides and therapeutic nucleoside derivatives across the plasma membrane. Despite decades of investigation, the structures of human CNTs remain unknown. We determined the cryogenic electron microscopy (cryo-EM) structure of human CNT (hCNT) 3 at an overall resolution of 3.6 Å. As with its bacterial homologs, hCNT3 presents a trimeric architecture with additional N-terminal transmembrane helices to stabilize the conserved central domains. The conserved binding sites for the substrate and sodium ions unravel the selective nucleoside transport and distinct coupling mechanism. Structural comparison of hCNT3 with bacterial homologs indicates that hCNT3 is stabilized in an inward-facing conformation. This study provides the molecular determinants for the transport mechanism of hCNTs and potentially facilitates the design of nucleoside drugs.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Uridina/química , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Transporte Biológico , Clonación Molecular , Microscopía por Crioelectrón , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Homología Estructural de Proteína , Especificidad por Sustrato , Uridina/metabolismo
12.
Eur Radiol ; 33(2): 825-835, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36166088

RESUMEN

OBJECTIVES: To evaluate the value of time-serial CT radiomics features in predicting progression-free survival (PFS) for lung adenocarcinoma (LUAD) patients after epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) therapy. MATERIALS AND METHODS: LUAD patients treated with EGFR-TKIs were retrospectively included from three independent institutes and divided into training and validation cohorts. Intratumoral and peritumoral features were extracted from time-serial non-contrast chest CT (including pre-therapy and first follow-up images); moreover, the percentage variation per unit time (day) was introduced to adjust for the different follow-up periods of each patient. Test-retest was performed to exclude irreproducible features, while the Boruta algorithm was used to select critical radiomics features. Radiomics signatures were constructed with random forest survival models in the training cohort and compared against baseline clinical characteristics through Cox regression and nonparametric testing of concordance indices (C-indices). RESULTS: The training cohort included 131 patients (74 women, 56.5%) from one institute and the validation cohort encompassed 41 patients (24 women, 58.5%) from two other institutes. The optimal signature contained 10 features and 7 were unit time feature variations. The comprehensive radiomics model outperformed the pre-therapy clinical characteristics in predicting PFS (training: 0.78, 95% CI: [0.72, 0.84] versus 0.55, 95% CI: [0.49, 0.62], p < 0.001; validation: 0.72, 95% CI: [0.60, 0.84] versus 0.54, 95% CI: [0.42, 0.66], p < 0.001). CONCLUSION: Radiomics signature derived from time-serial CT images demonstrated optimal prognostic performance of disease progression. This dynamic imaging biomarker holds the promise of monitoring treatment response and achieving personalized management. KEY POINTS: • The intrinsic tumor heterogeneity can be highly dynamic under the therapeutic effect of EGFR-TKI treatment, and the inevitable development of drug resistance may disrupt the duration of clinical benefit. Decision-making remained challenging in practice to detect the emergence of acquired resistance during the early response phase. • Time-serial CT-based radiomics signature integrating intra- and peritumoral features offered the potential to predict progression-free survival for LUAD patients treated with EGFR-TKIs. • The dynamic imaging signature allowed for prognostic risk stratification.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Femenino , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Pronóstico , Estudios Retrospectivos , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Tomografía Computarizada por Rayos X/métodos , Receptores ErbB , Medición de Riesgo
13.
Nucleic Acids Res ; 49(9): 5382-5392, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33956156

RESUMEN

The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1', which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.


Asunto(s)
Biocatálisis , Exorribonucleasas/química , Exorribonucleasas/metabolismo , SARS-CoV-2/química , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Exorribonucleasas/genética , Guanina , Metiltransferasas/química , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Dominios Proteicos/genética , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , Proteínas Reguladoras y Accesorias Virales/genética
14.
J Biol Chem ; 296: 100479, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33640454

RESUMEN

Nucleoside homeostasis, which is mediated by transporters and channels, is essential for all life on Earth. In Escherichia coli, NupG mediates the transport of nucleosides and was deemed to be the prototype of the nucleoside proton symporter (NHS) family and the major facilitator superfamily. To date, the substrate recognition and transport mechanisms of NHS transporters are still elusive. Here, we report two crystal structures of NupG (WT and D323A NupG) resolved at 3.0 Å. Both structures reveal an identical inward-open conformation. Together with molecular docking and molecular dynamics simulations and in vitro uridine-binding assays, we found that the uridine binding site, which locates in the central cavity between N and C domains of NupG, is constituted by R136, T140, F143, Q225, N228, Q261, E264, Y318, and F322. Moreover, we found that D323 is very important for substrate binding via in vitro uridine-binding assays using D323 mutations, although it does not have a direct contact with uridine. Our structural and biochemical data therefore provide an important framework for the mechanistic understanding of nucleoside transporters of the NHS family.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Transporte Biológico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Nucleósidos/metabolismo , Simportadores/metabolismo
15.
IUBMB Life ; 74(12): 1180-1199, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36082803

RESUMEN

Cancer cells shift their glucose catabolism from aerobic respiration to lactic fermentation even in the presence of oxygen, and this is known as the "Warburg effect". To accommodate the high glucose demands and to avoid lactate accumulation, the expression levels of human glucose transporters (GLUTs) and human monocarboxylate transporters (MCTs) are elevated to maintain metabolic homeostasis. Therefore, inhibition of GLUTs and/or MCTs provides potential therapeutic strategies for cancer treatment. Here, we summarize recent advances in the structural characterization of GLUTs and MCTs, providing a comprehensive understanding of their transport and inhibition mechanisms to facilitate further development of anticancer therapies.


Asunto(s)
Glucosa , Transportadores de Ácidos Monocarboxílicos , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Láctico/metabolismo , Fermentación
16.
Phys Rev Lett ; 129(27): 270501, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36638302

RESUMEN

Tensor networks are efficient representations of high-dimensional tensors with widespread applications in quantum many-body physics. Recently, they have been adapted to the field of machine learning, giving rise to an emergent research frontier that has attracted considerable attention. Here, we study the trainability of tensor-network based machine learning models by exploring the landscapes of different loss functions, with a focus on the matrix product states (also called tensor trains) architecture. In particular, we rigorously prove that barren plateaus (i.e., exponentially vanishing gradients) prevail in the training process of the machine learning algorithms with global loss functions. Whereas, for local loss functions the gradients with respect to variational parameters near the local observables do not vanish as the system size increases. Therefore, the barren plateaus are absent in this case and the corresponding models could be efficiently trainable. Our results reveal a crucial aspect of tensor-network based machine learning in a rigorous fashion, which provide a valuable guide for both practical applications and theoretical studies in the future.

17.
Eur Arch Otorhinolaryngol ; 279(4): 2003-2008, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34379180

RESUMEN

BACKGROUND AND PURPOSE: The WHO recently designated salivary gland lymphoepithelial carcinoma as a unique malignant tumor that most commonly occurs in the parotid gland. This is a rare cancer and there are few reports in the literature. Among 854 patients with parotid gland tumors who were admitted to our institution, we diagnosed 12 patients (1.41%) with parotid lymphoepithelial carcinoma. METHODS: Retrospective analysis of 12 patients with parotid lymphoepithelial carcinoma diagnosed by the Department of Pathology, Xiangya Hospital of Central South University. RESULTS: All 12 patients had unilateral parotid gland disease and 8 had cervical lymph node metastasis. Five patients received PCR testing for the Epstein-Barr virus and two were positive. All patients received surgical treatment, two received surgical resection alone, nine received surgery and postoperative radiotherapy and chemotherapy, and one received surgery and postoperative chemotherapy. The postoperative follow-up time ranged from 13 to 77 months. As of the last follow-up, eight patients were tumor-free, one patient was lost to follow-up, and three patients died. The main cause of death was local tumor recurrence and multiple metastases throughout the body. CONCLUSION: Parotid lymphoepithelial carcinoma is a malignant neoplasm characterized by proliferation, invasion, and inclusion of poorly differentiated or undifferentiated carcinoma, and a high rate of metastasis to ipsilateral cervical lymph nodes. The comprehensive treatment method consists of radical resection combined with postoperative radiotherapy and chemotherapy. After this comprehensive treatment, the 1-year, 3-year, and 5-year overall survival rates of our patients were 100%, 78.8%, and 39.4%.


Asunto(s)
Carcinoma de Células Escamosas , Infecciones por Virus de Epstein-Barr , Neoplasias de la Parótida , Carcinoma de Células Escamosas/patología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/diagnóstico , Herpesvirus Humano 4 , Humanos , Glándula Parótida/cirugía , Neoplasias de la Parótida/diagnóstico , Neoplasias de la Parótida/patología , Neoplasias de la Parótida/terapia , Estudios Retrospectivos
18.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233319

RESUMEN

Powdery mildew caused by Erysiphe pisi DC. is a major disease affecting pea worldwide. This study aimed to confirm the resistance genes contained in three powdery mildew-resistant Chinese pea landraces (Suoshadabaiwan, Dabaiwandou, and Guiwan 1) and to develop the functional markers of the novel resistance genes. The resistance genes were identified by genetic mapping and PsMLO1 gene sequence identification. To confirm the inheritance of powdery mildew resistance in the three Landraces, the susceptible cultivars Bawan 6, Longwan 1, and Chengwan 8 were crossed with Suoshadabaiwan, Dabaiwandou, and Guiwan 1 to produce F1, F2, and F2:3 populations, respectively. All F1 plants were susceptible to E. pisi, and phenotypic segregation patterns in all the F2 and F2:3 populations fit the 3:1 (susceptible: resistant) and 1:2:1 (susceptible homozygotes: heterozygotes: resistant homozygotes) ratios, respectively, indicating powdery mildew resistance in the three Landraces were controlled by a single recessive gene, respectively. The analysis of er1-linked markers and genetic mapping in the F2 populations suggested that the recessive resistance genes in three landraces could be er1 alleles. The cDNA sequences of 10 homologous PsMLO1 cDNA clones from the contrasting parents were obtained. A known er1 allele, er1-4, was identified in Suoshadabaiwan. Two novel er1 alleles were identified in Dabaiwandou and Guiwan 1, which were designated as er1-13 and er1-14, respectively. Both novel alleles were characterized with a 1-bp deletion (T) in positions 32 (exon 1) and 277 (exon 3), respectively, which caused a frame-shift mutation to result in premature termination of translation of PsMLO1 protein. The co-dominant functional markers specific for er1-13 and er1-14, KASPar-er1-13, and KASPar-er1-14 were developed and effectively validated in populations and pea germplasms. Here, two novel er1 alleles were characterized and their functional markers were validated. These results provide powerful tools for marker-assisted selection in pea breeding.


Asunto(s)
Ascomicetos , Pisum sativum , Alelos , Ascomicetos/genética , China , ADN Complementario , Resistencia a la Enfermedad/genética , Erysiphe , Pisum sativum/genética , Fitomejoramiento , Enfermedades de las Plantas/genética
19.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955926

RESUMEN

Induced mutation is useful for improving the disease resistance of various crops. Fusarium wilt and powdery mildew are two important diseases which severely influence pea production worldwide. In this study, we first evaluated Fusarium wilt and powdery mildew resistance of mutants derived from two elite vegetable pea cultivars, Shijiadacaiwan 1 (SJ1) and Chengwan 8 (CW8), respectively. Nine SJ1 and five CW8 M3 mutants showed resistant variations in Fusarium wilt, and the same five CW8 mutants in powdery mildew. These resistant variations were confirmed in M4 and M5 mutants as well. Then, we investigated the genetic variations and relationships of mutant lines using simple sequence repeat (SSR) markers. Among the nine effective SSR markers, the genetic diversity index and polymorphism information content (PIC) values were averaged at 0.55 and 0.46, which revealed considerable genetic variations in the mutants. The phylogenetic tree and population structure analyses divided the M3 mutants into two major groups at 0.62 genetic similarity (K = 2), which clearly separated the mutants of the two cultivars and indicated that a great genetic difference existed between the two mutant populations. Further, the two genetic groups were divided into five subgroups at 0.86 genetic similarity (K = 5) and each subgroup associated with resistant phenotypes of the mutants. Finally, the homologous PsMLO1 cDNA of five CW8 mutants that gained resistance to powdery mildew was amplified and cloned. A 129 bp fragment deletion was found in the PsMLO1 gene, which was in accord with er1-2. The findings provide important information on disease resistant and molecular variations of pea mutants, which is useful for pea production, new cultivar breeding, and the identification of resistance genes.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Resistencia a la Enfermedad/genética , Pisum sativum/genética , Filogenia , Fitomejoramiento , Enfermedades de las Plantas/genética
20.
Biochem Biophys Res Commun ; 534: 272-278, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33280821

RESUMEN

Drug-proton antiporters (DHA) play an important role in multi-drug resistance, utilizing the proton-motive force to drive the expulsion of toxic molecules, including antibiotics and drugs. DHA transporters belong to the major facilitator superfamily (MFS), members of which deliver substrates by utilizing the alternating access model of transport. However, the transport process is still elusive. Here, we report the structures of SotB, a member of DHA1 family (TCDB: 2.A.1.2) from Escherichia coli. Four crystal structures of SotB were captured in different conformations, including substrate-bound occluded, inward-facing, and inward-open states. Comparisons between the four structures reveal nonlinear rigid-body movements of alternating access during the state transition from inward-open to occluded conformation. This work not only reveals the conformational dynamics of SotB but also deepens our understanding of the alternating access mechanism of MFS transporters.


Asunto(s)
Antiportadores/química , Antiportadores/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Antiportadores/genética , Transporte Biológico Activo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Dominios Proteicos , Fuerza Protón-Motriz , Protones , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA