Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 45(6): 1175-1188, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459256

RESUMEN

Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with oxidative stress, inflammation and apoptosis in the heart. MACRO domain containing 1 (Macrod1) is an ADP-ribosylhydrolase 1 that is highly enriched in mitochondria, participating in the pathogenesis of cardiovascular diseases. In this study, we investigated the role of Macrod1 in DCM. A mice model was established by feeding a high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). We showed that Macrod1 expression levels were significantly downregulated in cardiac tissue of DCM mice. Reduced expression of Macrod1 was also observed in neonatal rat cardiomyocytes (NRCMs) treated with palmitic acid (PA, 400 µM) in vitro. Knockout of Macrod1 in DCM mice not only worsened glycemic control, but also aggravated cardiac remodeling, mitochondrial dysfunction, NAD+ consumption and oxidative stress, whereas cardiac-specific overexpression of Macrod1 partially reversed these pathological processes. In PA-treated NRCMs, overexpression of Macrod1 significantly inhibited PARP1 expression and restored NAD+ levels, activating SIRT3 to resist oxidative stress. Supplementation with the NAD+ precursor Niacin (50 µM) alleviated oxidative stress in PA-stimulated cardiomyocytes. We revealed that Macrod1 reduced NAD+ consumption by inhibiting PARP1 expression, thereby activating SIRT3 and anti-oxidative stress signaling. This study identifies Macrod1 as a novel target for DCM treatment. Targeting the PARP1-NAD+-SIRT3 axis may open a novel avenue to development of new intervention strategies in DCM. Schematic illustration of macrod1 ameliorating diabetic cardiomyopathy oxidative stress via PARP1-NAD+-SIRT3 axis.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ratones Endogámicos C57BL , Miocitos Cardíacos , NAD , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasa-1 , Sirtuina 3 , Animales , Masculino , Ratones , Ratas , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Dieta Alta en Grasa , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , NAD/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ácido Palmítico/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sirtuina 3/metabolismo , Sirtuina 3/genética , Estreptozocina
2.
Ageing Res Rev ; 94: 102176, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141734

RESUMEN

ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.


Asunto(s)
ADP Ribosa Transferasas , ADP-Ribosilación , Humanos , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA