Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005247

RESUMEN

The Nod-like receptor family PYRIN domain containing 3 (NLRP3) inflammasome is a multiprotein signaling complex that plays a pivotal role in innate immunity, and the dysregulated NLRP3 inflammasome activation is implicated in various diseases. Tiliroside is a natural flavonoid in multiple medicinal and dietary plants with known anti-inflammatory activities. However, its role in regulating NLRP3 inflammasome activation and NLRP3-related disease has not been evaluated. Herein, it was demonstrated that tiliroside is inhibitory in activating the NLRP3 inflammasome in macrophages. Mechanistically, tiliroside promotes AMP-activated protein kinase (AMPK) activation, thereby leading to ameliorated mitochondrial damage as evidenced by the reduction of mitochondrial reactive oxygen species (ROS) production and the improvement of mitochondrial membrane potential, which is accompanied by attenuated NLRP3 inflammasome activation in macrophages. Notably, tiliroside potently attenuated lipopolysaccharide (LPS)-induced acute lung injury in mice, which has been known to be NLRP3 inflammasome dependent. For the first time, this study identified that tiliroside is an NLRP3 inflammasome inhibitor and may represent a potential therapeutic agent for managing NLRP3-mediated inflammatory disease.


Asunto(s)
Lesión Pulmonar Aguda , Inflamasomas , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , Flavonoides/metabolismo , Lesión Pulmonar Aguda/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología
2.
Opt Express ; 27(3): 3460-3471, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732366

RESUMEN

A novel modulation index stabilization technique for tracking the phase modulation index of integrated optic phase modulator (IOPM) is proposed to improve temperature performance of the resonant integrated optic gyro (RIOG). The influence mechanism of IOPM's modulation index fluctuation on the RIOG, especially the angular velocity tracking loop of RIOG, is investigated. A Mach-Zehnder Interferometer (MZI) is ingeniously added into the conventional RIOG structure for detecting the modulation index fluctuation. For synchronously demodulating the output of RIOG and the gain of IOPM in real time, a novel six-state wave modulation scheme is also proposed. Moreover, considering the disturbance and nonlinearity, the system model of IOPM's modulation index controller is established and designed to guarantee high speed and precision tracking. The experimental results demonstrate that the proposed modulation index stabilization technique can in real time demodulate and control the modulation index of IOPM. The gyro scale factor stability of RIOG resulting from the IOPM's modulation index fluctuation is decreased to 189.26 ppm within -40°C to +60°C, which, to the best of our knowledge, is the first time stabilizing the modulation index of IOPM in RIOG at full temperature.

3.
Opt Express ; 27(23): 34298-34311, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31878480

RESUMEN

Micro-grating accelerometer detecting small displacement by an optical system can be widely applied in inertial navigation and seismic monitoring. We proposed a micro-grating accelerometer prototype with a proof mass of gram-scale to decrease the thermal mechanical noise, which is the fundamental limit of a high-resolution accelerometer. The theoretical model for the contrast ratio of a micro-grating accelerometer is established based on Gaussian beam theory, and the adjustment method based on a scanning slit beam profiler improves the contrast ratio of 0th order effectively. Compared to our former prototype, experiment results indicate the noise floor is decreased from 0.9 mg/√Hz to 137 ng/√Hz, and the bias stability is decreased from 0.35 mg to 3.1 µg.

4.
Front Microbiol ; 12: 655242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995316

RESUMEN

Resistance caused by the formation of the Candida albicans (C. albicans) biofilm is one of the main reasons for antifungal therapy failure. Thus, it is important to find indicators that predict C. albicans biofilm formation to provide evidence for the early prevention and treatment of the C. albicans biofilms. In this study, C. albicans samples were selected from C. albicans septicemia that were sensitive to common antifungal agents. It was found that the agglutinin-like sequence 3 (ALS3) gene was differentially expressed in free, antifungal, drug-sensitive C. albicans. The average ALS3 gene expression was higher in the C. albicans strains with biofilm formation than that in the C. albicans strains without biofilm formation. Then, it was further confirmed that the rate of biofilm formation was higher in the high ALS3 gene expression group than that in the low ALS3 gene expression group. It was found that C. albicans with biofilm formation was more resistant to fluconazole, voriconazole, and itraconazole. However, it maintained its sensitivity to caspofungin and micafungin in vitro and in mice. Further experiments regarding the prevention of C. albicans biofilm formation were performed in mice, in which only caspofungin and micafungin prevented C. albicans biofilm formation. These results suggest that the expression level of ALS3 in C. albicans may be used as an indicator to determine whether C. albicans will form biofilms. The results also show that the biofilm formation of C. albicans remained sensitive to caspofungin and micafungin, which may help to guide the selection of clinical antifungal agents for prevention and therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA