Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39135499

RESUMEN

Fluorescent nanothermometers based on thermal-dependent lifetime have a significant advantage in biological imaging owing to their immunity toward scattering, absorption, and autofluorescence. In this study, we present the first example of a water-soluble europium complex ([L1Eu]-) that exhibits high sensitivity (1.2% K-1 at 298 K) based on a temperature-dependent lifetime in the millisecond time range. This complex and its analogues show considerable potential for organelle imaging. The mechanism behind this thermal-sensitive behavior has been extensively investigated using transient absorption spectroscopy and variable temperature time-resolved luminescence methods. A highly efficient ligand sensitization process and a thermally activated back energy transfer process have been demonstrated. This study bridges the gap in small molecule thermometers with lifetimes longer than 1 ms and provides guidance in ligand design for metal coordination complex thermometers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA