Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell Mol Biol Lett ; 27(1): 8, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073841

RESUMEN

BACKGROUND: Glycosyltransferases play a crucial role in various cancers. ß1, 3-N-acetylglucosaminyltransferase 2, a polylactosamine synthase, is an important member of the glycosyltransferase family. However, the biological function and regulatory mechanism of ß3GNT2 in esophageal carcinoma (ESCA) is still poorly understood. METHODS: The Cancer Genome Atlas and Genotype-Tissue Expression databases were used for gene expression and prognosis analysis. Quantitative real-time PCR, Western blot, and immunohistochemistry were performed to detect the expression of ß3GNT2 in ESCA cell lines and tissues. In vitro assays and xenograft tumor models were utilized to evaluate the impact of ß3GNT2 on ESCA progression. The downstream effectors and upstream regulators of ß3GNT2 were predicted by online software and verified by functional experiments. RESULTS: We found that ß3GNT2 was highly expressed in ESCA tissues and positively correlated with poor prognosis in ESCA patients. ß3GNT2 expression was closely associated with the tumor size, TNM stage, and overall survival of ESCA patients. Functionally, ß3GNT2 promoted ESCA cell growth, migration, and invasion in vitro, as well as tumorigenesis in vivo. Mechanistically, ß3GNT2 knockdown decreased the expression of the polylactosamine on EGFR. Knockdown of ß3GNT2 also inhibited the JAK/STAT signaling pathway. Meanwhile, the JAK/STAT inhibitor could partly reverse the biological effects caused by ß3GNT2 overexpression. Moreover, ß3GNT2 expression was positively regulated by CREB1 and negatively regulated by miR-133b. Both CREB1 and miR-133b was involved in the ß3GNT2-mediated ESCA progression. CONCLUSIONS: Our study, for the first time, reveals the importance of ß3GNT2 in ESCA progression and offers a potential therapeutic target for ESCA.


Asunto(s)
Carcinoma , Neoplasias Esofágicas , MicroARNs , N-Acetilglucosaminiltransferasas/genética , Carcinoma/genética , Línea Celular Tumoral , Proliferación Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Humanos , MicroARNs/genética
2.
J Clin Lab Anal ; 36(11): e24662, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36181310

RESUMEN

BACKGROUND: GRAP2 is an adaptor protein involved in leukocyte signal activation; however, the prognostic value of GRAP2 and its correlation with immune infiltration in lung adenocarcinoma (LUAD) are unclear. METHODS: Original data were downloaded from the TCGA database and Gene Expression Omnibus (GEO) database. GRAP2 expression was analyzed with the TCGA and TIMER databases. We evaluated the influence of GRAP2 on clinical prognosis using the Kaplan-Meier plotter, GEO, and GEPIA database. The TIMER and TISIDB databases were used to investigate correlations between GRAP2 expression and cancer immune characteristics. Finally, we confirmed the expression of GRAP2 in LUAD by immunohistochemistry staining. RESULTS: The transcription levels of GRAP2 were significantly lower in several human cancer types, including LUAD, than in adjacent normal tissues. Immunohistochemistry staining confirmed that LUAD tumor tissues had lower GRAP2 protein expression levels than adjacent normal tissues. GRAP2 downregulation was associated with poorer overall survival, pathologic stage, T stage, N stage, and primary therapy outcome in LUAD. Mechanistically, we found a hub gene set that included a total of 91 genes coexpressed with GRAP2, which were closely related to the immune response in LUAD. The expression levels of GRAP2 were positively correlated with the infiltration levels of multiple immune cells and the cumulative survival time of a few immune cells. GRAP2 expression was found to be positively correlated with that of multiple immune markers, chemokines, chemokine receptors, and MHC molecules in LUAD. CONCLUSIONS: GRAP2 can be used as a biomarker for assessing prognosis and immune infiltration levels in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Neoplasias Pulmonares/patología , Regulación Neoplásica de la Expresión Génica , Adenocarcinoma del Pulmón/patología , Biomarcadores
3.
J Cell Mol Med ; 24(14): 8069-8077, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32495469

RESUMEN

Accumulating evidence suggests that ubiquitin-like with plant homeodomain and ring finger domains 1 (UHRF1) is overexpressed in non-small cell lung cancer (NSCLC); however, the expression and function of UHRF1 in the subtype of NSCLC are still unclear. Here, we investigate the expression and prognosis traits of UHRF1 in large NSCLC cohorts and explore the molecular characters during UHRF1 up-regulation. We find that UHRF1 is predominantly overexpressed in lung squamous cell carcinoma (SCC). Surprisingly, the up-regulated UHRF1 is only associated with the overall survival of lung adenocarcinoma (ADC) and knockdown of UHRF1 dramatically attenuates ADC tumorigenesis. Mechanically, we identify a hub gene that includes a total of 55 UHRF1-related genes, which are tightly associated with cell cycle pathway and yield to the poor clinical outcome in ADC patients. What's more, we observe knockdown of UHRF1 only affects ADC cells cycle and induces cell apoptosis. These results suggest that up-regulated UHRF1 only contributes to lung ADC survival by triggering cell cycle pathway, and it may be a prognostic biomarker for lung ADC patients.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/mortalidad , Biomarcadores de Tumor , Proteínas Potenciadoras de Unión a CCAAT/genética , Ciclo Celular/genética , Ubiquitina-Proteína Ligasas/genética , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Biología Computacional/métodos , Expresión Génica , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Pronóstico
4.
J Cell Biochem ; 121(1): 574-586, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31407410

RESUMEN

The NAD-dependent deacetylase Sirtuin 1 (SIRT1) plays a vital role in leukemogenesis. Nicotinamide (NAM) is the principal NAD+ precursor and a noncompetitive inhibitor of SIRT1. In our study, we showed that NAM enhanced the sensitivity of chronic myeloid leukemia (CML) to doxorubicin (DOX) via SIRT1. We found that SIRT1 high expression in CML patients was associated with disease progression and drug resistance. Exogenous NAM efficiently repressed the deacetylation activity of SIRT1 and induced the apoptosis of DOX-resistant K562 cells (K562R) in a dose-dependent manner. Notably, the combination of NAM and DOX significantly inhibited tumor cell proliferation and induced cell apoptosis. The knockdown of SIRT1 in K562R cells enhanced NAM+DOX-induced apoptosis. SIRT1 rescue in K562R reduced the NAM+DOX-induced apoptosis. Mechanistically, the combinatory treatment significantly increased the cleavage of caspase-3 and PARP in K562R in vitro and in vivo. These results suggest the potential role of NAM in increasing the sensitivity of CML to DOX via the inhibition of SIRT1.


Asunto(s)
Doxorrubicina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Niacinamida/farmacología , Sirtuina 1/antagonistas & inhibidores , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Combinación de Medicamentos , Sinergismo Farmacológico , Femenino , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Ratones SCID , Sirtuina 1/genética , Sirtuina 1/metabolismo , Células Tumorales Cultivadas , Complejo Vitamínico B/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Recept Signal Transduct Res ; 40(6): 541-549, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32515250

RESUMEN

Context: Curcumin has shown efficacy in promoting radiosensitivity combined with radiotherapy. However, the role and mechanism of curcumin on radiosensitivity in laryngeal squamous cell cancer (LSCC) is largely unknown.Objective: The aim of our study is to explore the role of IKKγ-NF-κB signaling in curcumin enhancing LSCC cell radiosensitivity in vitro.Materials and methods: Curcumin and X-ray were used to induce cell DNA damage and apoptosis, or inhibit cell clone formation. IKKγ siRNA and plasmid were used to change IKKγ expression. The CCK8 assay was used to detect cell viability. Clone formation ability was analyzed using a clonogenic assay, cell apoptosis was examined using flow cytometry, an immunofluorescence assay was used to detect DNA damage, while mRNA and protein levels were assayed using real time PCR and western blotting, respectively.Results: Curcumin significantly enhanced irradiation-induced DNA damage and apoptosis, while weakening clone-forming abilities of LSCC cell line Hep2 and Hep2-max. Compared to Hep2 cells, Hep2-max cells are more sensitive to curcumin post-irradiation. Curcumin suppressed irradiation-induced NF-κB activation by suppressing IKKγ expression, but not IKKα and IKKß. Overexpression of IKKγ decreased irradiation-induced DNA damage and apoptosis, while promoting clone-forming abilities of Hep2 and Hep2-max cells. IKKγ overexpression further increased expression of NF-κB downstream genes, Bcl-XL, Bcl-2, and cyclin D1. Conversely, IKKγ silencing enhanced irradiation-induced DNA damage and apoptosis, but promoted clone formation in Hep2 and Hep2-max cells. Additionally, IKKγ silencing inhibited expression of Bcl-XL, Bcl-2, and cyclin D1.Conclusions: Curcumin enhances LSCC radiosensitivity via NF-ΚB inhibition by suppressing IKKγ expression.


Asunto(s)
Carcinoma de Células Escamosas/radioterapia , Curcumina/farmacología , Quinasa I-kappa B/antagonistas & inhibidores , Neoplasias Laríngeas/radioterapia , FN-kappa B/antagonistas & inhibidores , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Laríngeas/tratamiento farmacológico , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patología , Fosforilación , Transducción de Señal , Células Tumorales Cultivadas
6.
Exp Cell Res ; 370(1): 127-136, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29913153

RESUMEN

Phosphoprotein associated with glycosphingolipid-enriched microdomains 1(PAG1) is a ubiquitous protein that is essential for the development and progression of various malignancies. A previous study in our laboratory confirmed that PAG1 plays an important role in modulating the inherent radioresistance of laryngeal cancer cells, but the underlying mechanisms are still poorly defined. In this study, we found that PAG1 was significantly increased in laryngeal cancer tissues compared to adjacent non-tumor tissues (P < 0.05). The expression of PAG1 was positively correlated with lymph node metastasis (P < 0.05) and TNM stage (P < 0.05). High expression of PAG1 also predicted a poor prognosis in patients with laryngeal cancer. Moreover, gain-of-function and loss-of-function studies showed that PAG1 overexpression was able to promote growth, increase migration and invasion, and enhance inherent radioresistance of laryngeal cancer cells. Mechanistic investigations revealed that the activation of STAT3 was required for PAG1-mediated inherent radioresistance of laryngeal cancer. Inhibition of STAT3 activity with a chemical inhibitor sensitized radioresistant cells to radiation. Importantly, PAG1-integrin ß1 complex was involved in the regulation of STAT3 activation. In addition, downregulation of PAG1 could suppress tumor growth and reverse inherent radioresistance in the nude mouse xenograft model. Taken together, these results suggested that PAG1 conferred inherent radioresistance by activating STAT3, which provided a novel therapeutic strategy for laryngeal cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Laríngeas/genética , Proteínas de la Membrana/genética , Tolerancia a Radiación/genética , Factor de Transcripción STAT3/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Integrina beta1/genética , Metástasis Linfática/genética , Metástasis Linfática/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
7.
Phys Rev Lett ; 117(5): 056802, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27517785

RESUMEN

We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

8.
Phys Rev Lett ; 117(5): 056804, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27517787

RESUMEN

The quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon that manifests as a quantized transverse conductance in response to a longitudinally applied electric field in the absence of an external magnetic field, and it promises to have immense application potential in future dissipationless quantum electronics. Here, we present a novel kinetic pathway to realize the QAHE at high temperatures by n-p codoping of three-dimensional topological insulators. We provide a proof-of-principle numerical demonstration of this approach using vanadium-iodine (V-I) codoped Sb_{2}Te_{3} and demonstrate that, strikingly, even at low concentrations of ∼2% V and ∼1% I, the system exhibits a quantized Hall conductance, the telltale hallmark of QAHE, at temperatures of at least ∼50 K, which is 3 orders of magnitude higher than the typical temperatures at which it has been realized to date. The underlying physical factor enabling this dramatic improvement is tied to the largely preserved intrinsic band gap of the host system upon compensated n-p codoping. The proposed approach is conceptually general and may shed new light in experimental realization of high-temperature QAHE.

9.
Angew Chem Int Ed Engl ; 55(44): 13822-13827, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27701817

RESUMEN

Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes.

10.
Front Oncol ; 13: 1207081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746262

RESUMEN

Background: 2',5'-oligoadenylate synthetase 1 (OAS1), has been reported as a tumor driver gene in breast carcinoma and pancreatic carcinoma. However, the role of OAS1 in most tumors has not been reported. Methods: The original data of 35 tumor types were down load from the TCGA (The Cancer Genome Atlas) database and Human Protein Atlas (HPA) database. TIMER2, Kmplot, UALCAN, and TISIDB tools were used to investigate the expression and function of OAS1, and the role of OAS1 in prognosis, diagnostic value, and immune characteristics of pan-cancer. LUAD and PRAD cell lines, A549, H1975, PC-3 and C4-2 were utilized to perform cell function tests. Results: OAS1 expression was up-regulated in 12 tumor types and down-regulated in 2 tumor types. High OAS1 expression was correlated with poor prognosis in 6 tumor types, while high OAS1 expression was correlated with good prognosis in 2 tumor types. OAS1 was correlated with molecular subtypes in 8 tumor types and immune subtypes in 12 tumor types. OAS1 was positively associated with the expression of numerous immune checkpoint genes and tumor mutational burden (TMB). OAS1 had potential diagnostic value in 15 tumor types. Silence of OAS1 significantly inhibited the cell proliferation ability, and promoted G2/M cell cycle arrest of LUAD and PRAD cells. Meanwhile, silence of OAS1 enhanced cisplatin-induced apoptosis of LUAD and PRAD cells, but weakened cell migration. Conclusion: This pan-cancer study suggests that OAS1can be used as a molecular biomarker for prognosis in pan-cancer and may play an important role in tumor immune response.

11.
Heliyon ; 9(11): e22090, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027636

RESUMEN

Radiation resistance has always been one of the main obstacles to tumor radiotherapy. Therefore, understanding the mechanisms underlying radiotherapy resistance is a focus of research. In this study, we induced two radiation-resistant cell lines to mimic the radiation resistance of NSCLC and investigated the mechanisms of radiotherapy resistance. Cell radiosensitivity was analyzed by single-cell gel electrophoresis, colony formation and tumor sphere formation assays. A wound healing assay was used to analyze cell migration. Western blotting and siRNA were used to identify the potential mechanism. In animal model experiments, xenograft tumors were used to verify the difference between radiotherapy-resistant and nonresistant NSCLC models after radiotherapy. Our results showed that NSCLC radiation-resistant cells exhibited more radioresistance and migratory abilities under low-dose irradiation. The expression of LIMK2 and p-CFL1 were upregulated in NSCLC radiation-resistant cells. Knockdown of LIMK2 significantly enhanced the radiosensitivity of NSCLC-resistant cells. In vivo, low-dose radiotherapy suppressed tumor growth, induced apoptosis and upregulated the expression of LIMK2 in xenograft tumors. However, radiotherapy had little effect on the NSCLC radiation resistance model. In conclusion, NSCLC radiation-resistant cells exhibit more radioresistance and migratory ability under low-dose irradiation. Strikingly, knockdown of LIMK2 enhanced the radiosensitivity of NSCLC-resistant cells.

12.
J Cancer ; 12(15): 4638-4647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149927

RESUMEN

Cervical cancer is one of the most common malignant tumors in the female reproductive system. Radioresistance remains a significant factor that limits the efficacy of radiotherapy for cervical cancer. Interleukin-11 (IL-11) has been reported to be upregulated in various types of human cancer and correlate with clinical stage and poor survival. However, the exact effects and mechanisms of IL-11 in the radioresistance of cervical cancer have not yet been defined. In this research, TCGA databases revealed that IL-11 expression was upregulated in cervical cancer tissues and was associated with clinical stages and poor prognosis in cervical cancer patients. We discovered that IL-11 concentration was significantly upregulated in radioresistant cervical cancer cells. Knocking down IL-11 in Hela cells could reduce clonogenic survival rate, decrease cell viability, induce G2/M phase block, and facilitate cell apoptosis. In contrast, Exogeneous IL-11 in C33A cells could upregulate clonogenic survival rate, increase cell viability, curb G2/M phase block, and cell apoptosis. Mechanistic investigations showed that radioresistance conferred by IL-11 was attributed to the activation of the PI3K/Akt signaling pathway. Altogether, our results demonstrate that IL-11 might be involved in radioresistance, and IL-11 may be a potent radiosensitization target for cervical cancer therapy.

13.
Oncol Lett ; 21(3): 230, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33613719

RESUMEN

Cisplatin resistance is one of the main causes of chemotherapy failure and tumor progression in non-small cell lung cancer (NSCLC). Emodin has been demonstrated to induce NSCLC cell apoptosis and act as a potential cancer therapeutic agent. However, whether emodin could affect NSCLC cell sensitivity toward cisplatin remains unclear. The present study aimed to determine the effect of emodin and cisplatin combination on the chemosensitivity of NSCLC cells. A549 and H460 cells were treated with different concentrations of cisplatin and/or emodin. Cell Counting Kit-8, fluorescence microscopy, immunofluorescence assays and flow cytometry were used to determine cell proliferation, drug efflux, DNA damage level and cell apoptosis, respectively. P-glycoprotein (Pgp) and multidrug resistance-associated protein 1 (MRP1) expression was detected by western blotting. The results demonstrated that emodin and cisplatin inhibited the proliferation of A549 and H460 cells. Furthermore, emodin inhibited the drug efflux in A549 and H460 cells in a dose-dependent manner. In addition, emodin enhanced cisplatin-induced apoptosis and DNA damage in A549 and H460 cells. Emodin also decreased Pgp expression in A549 and H460 cells in a dose-dependent manner; however, it had no effect on MRP1 expression. Taken together, the results from the present study demonstrated that emodin can increase A549 and H460 cell sensitivity to cisplatin by inhibiting Pgp expression. Emodin may therefore be considered as an effective adjuvant for cisplatin treatment.

14.
Front Cell Dev Biol ; 9: 707970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307388

RESUMEN

Glycosyltransferases are frequently dysregulated in lung cancer. Core 1 ß 1, 3-galactosyltransferase 1 (C1GALT1), an enzyme highly expressed in various cancers, is correlated with tumor initiation and development. However, the role of C1GALT1 in lung cancer remains poorly understood. In this study, through bioinformatic analysis and clinical validation, we first discovered that C1GALT1 expression was upregulated in lung adenocarcinoma (LUAD) tissues and was closely related to poor prognosis in patients with LUAD. Gain- and loss-of-function experiments showed that C1GALT1 promoted LUAD cell proliferation, migration, and invasion in vitro, as well as tumor formation in vivo. Further investigation demonstrated that RAC1 expression was positively regulated by C1GALT1 in LUAD, whereas silencing Rac1 could reverse C1GALT1-induced tumor growth and metastasis. Moreover, miR-181d-5p was identified as a negative regulator for C1GALT1 in LUAD. As expected, the inhibitory effects of miR-181d-5p on LUAD cell proliferation, migration, and invasion were counteracted by restoration of C1GALT1. In summary, our results highlight the importance of the miR-181d-5p/C1GALT1/RAC1 regulatory axis during LUAD progression. Thus, C1GALT1 may serve as a potential therapeutic target for LUAD.

15.
Cell Biosci ; 11(1): 166, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34452648

RESUMEN

BACKGROUND: Gastric cancer (GC) is a highly aggressive and lethal disease around the world. High expression of core 1 ß 1, 3-galactosyltransferase 1 (C1GALT1), the primary enzyme responsible for protein O-glycosylation, plays a critical role in gastric carcinogenesis. However, proteins that can be O-glycosylated by C1GALT1 in GC have not been completely elucidated. Also, the mechanism leading to its upregulation in GC is currently unknown. RESULTS: Using public databases and our patient samples, we confirmed that C1GALT1 expression was upregulated at both the mRNA and protein levels in GC tissues. Elevated expression of C1GALT1 protein was closely associated with advanced TNM stage, lymph node metastasis, tumor recurrence, and poor overall survival. With gain- and loss-of-function approaches, we demonstrated that C1GALT1 promoted GC cell proliferation, migration, and invasion. By employing lectin pull-down assay and mass spectrometry, integrin α5 was identified as a new downstream target of C1GALT1 in GC. C1GALT1 was able to modify O-linked glycosylation on integrin α5 and thereby modulate the activation of the PI3K/AKT pathway. Functional experiments indicated that integrin α5 inhibition could reverse C1GALT1-mediated tumor growth and metastasis both in vitro and in vivo. Moreover, transcription factor SP1 was found to bind to the C1GALT1 promoter region and activated its expression. Further investigation proved that miR-152 negatively regulated C1GALT1 expression by directly binding to its 3' -UTR. CONCLUSIONS: Our findings uncover a novel mechanism for C1GALT1 in the regulation of GC progression. Thus, C1GALT1 may serve as a promising target for the diagnosis and treatment of GC.

16.
Front Oncol ; 11: 752642, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912709

RESUMEN

BACKGROUND: Glucose-6-phosphate isomerase (GPI) plays an important role in glycolysis and gluconeogenesis. However, the role of GPI in lung adenocarcinoma (LUAD) remains unclear. METHODS: All original data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and integrated via R 3.2.2. GPI expression was explored with TCGA, GEO, and Oncomine databases. Immunohistochemistry staining was used to analyze GPI expression in clinical specimens. The correlations between GPI and cancer immune characteristics were analyzed via the TIMER and TISIDB databases. GPI-specific siRNAs were used to verify the role of GPI expression on cell proliferation and cell cycle distribution. RESULTS: In general, GPI is predominantly overexpressed and has reference value in the diagnosis and prognostic estimation of LUAD. Upregulated GPI was associated with poorer overall survival, clinical stage, N stage, and primary therapy outcome in LUAD. Mechanistically, we identified a hub gene that included a total of 56 GPI-related genes, which were tightly associated with the cell cycle pathway in LUAD patients. Knockdown of GPI induced cell proliferation inhibition and cell cycle arrest. GPI expression was positively correlated with infiltrating levels of Th2 cells and regulatory T cells (Tregs); in contrast, GPI expression was negatively correlated with infiltrating levels of CD8+ T cells, central memory T cells, dendritic cells, macrophages, mast cells, and eosinophils. GPI was negatively correlated with the expression of immunostimulators, such as CD40L, IL6R, and TMEM173, in LUAD. CONCLUSION: GPI may play an important role in the cell cycle and can be used as a prognostic biomarker for determining the prognosis and immune infiltration in LUAD.

17.
Cell Oncol (Dordr) ; 43(4): 695-707, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32474852

RESUMEN

PURPOSE: Radio-resistance is recognized as a main factor in the failure of radiotherapy in oesophageal squamous cell carcinoma (ESCC). Aberrant cell surface glycosylation has been reported to correlate with radio-resistance in different kinds of tumours. However, glycomic alterations and the corresponding enzymes associated with ESCC radio-resistance have not yet been defined. METHODS: Two radioresistant cell lines, EC109R and TE-1R, were established from parental ESCC cell lines EC109 and TE-1 by fractionated irradiation. A lectin microarray was used to screen for altered glycan patterns. RNA-sequencing (RNA-seq) was employed to identify differentially expressed glycosyltransferases. Cell Counting Kit-8, colony formation and flow cytometry assays were used to measure cell viability and radiosensitivity. Expression of glycosyltransferase in ESCC tissues was assessed by immunohistochemistry. In vivo radiosensitivity was analysed using a nude mouse xenograft model. Downstream effectors of the enzyme were verified using a lectin-based pull-down assay combined with mass spectrometry. RESULTS: We found that EC109R and TE-1R cells were more resistant to irradiation than the parental EC109 and TE-1 cells. Using lectin microarrays combined with RNA sequencing, we found that α1, 6-fucosyltransferase (FUT8) was overexpressed in the radioresistant ESCC cell lines. Both gain- and loss-of-function studies confirmed that FUT8 regulates the sensitivity of ESCC cells to irradiation. Importantly, we found that high FUT8 expression was positively linked to radio-resistance and a poor prognosis in ESCC patients who received radiation therapy. Moreover, FUT8 inhibition suppressed the growth and formation of xenograft tumours in nude mice after irradiation. Using a lectin-based pull-down assay and mass spectrometry, we found that CD147 could be glycosylated by FUT8. As expected, inhibition of CD147 partly reversed FUT8-induced radio-resistance in ESCC cells. CONCLUSIONS: Our results indicate that FUT8 functions as a driver of radio-resistance in ESCC by targeting CD147. Therefore, FUT8 may serve as a marker for predicting the response to radiation therapy in patients with ESCC.


Asunto(s)
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Fucosiltransferasas/metabolismo , Tolerancia a Radiación/fisiología , Animales , Basigina/metabolismo , Células Cultivadas , Glicómica/métodos , Glicosilación , Xenoinjertos , Humanos , Lectinas , Ratones , Ratones Desnudos
18.
Technol Cancer Res Treat ; 19: 1533033820947485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33124505

RESUMEN

Radiotherapy has been reported to cause cancer metastasis. Thus, a new strategy for radiotherapy must be developed to avoid this side effect. A549 cells were exposed to radiation to induce an epithelial-mesenchymal transition (EMT) cell model. Real-time PCR and western blotting were used to detect mRNA and protein expression levels, and Transwell invasion and wound healing assays were used to detect cell migration and invasion. ELISA was used to detect soluble E-cadherin (sE-cad) secretion. siRNA was used to silence MMP9 expression. The results show that A549R cells exhibited an EMT phenotype with increased E-cadherin, N-cadherin, Snail, Slug, vimentin and Twist expression and decreased pan-keratin expression. sE-cad levels were increased in A549R cells and in the serum of NSCLC patients with distant metastasis. Exogenous sE-cad treatment and sE-cad overexpression promoted A549R and A549 cell migration and invasion. In contrast, blocking sE-cad attenuated A549 cell migration and invasion. Curcumin inhibited sE-cad expression and reversed EMT induced by radiation. Furthermore, curcumin suppressed sE-cad-enhanced A549 and A549R cell migration and invasion. Curcumin inhibited MMP9 expression, and silencing MMP9 suppressed sE-cad expression. Taken together, we found a nonclassic EMT phenomenon induced by radiation. Curcumin inhibits NSCLC migration and invasion by suppressing radiation-induced EMT and sE-cad expression by decreasing MMP9 expression.


Asunto(s)
Antineoplásicos/farmacología , Cadherinas/genética , Curcumina/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Cadherinas/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/genética , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad
19.
J Cancer ; 11(16): 4736-4745, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32626520

RESUMEN

Esophageal cancer (EC) is a unique and heterogeneous disease diagnosed mostly at advanced stages. Altered glycans presented on cell surfaces are involved in the occurrence and development of malignancy. However, the effects of glycans on EC progression are largely unexplored. Here, a lectin array was utilized to detect the glycan profiling of the normal esophageal mucosal epithelial cell line and two EC cell lines. The binding of Lens culinaris lectin (LCA) to EC cells was found to be stronger than that of the normal cells. Lectin immunohistochemical staining revealed that LCA-binding glycans were markedly elevated in EC tissues compared to adjacent non-cancerous tissues. LCA staining was significantly associated with lymph node metastasis, depth of invasion, TNM stage and poor overall survival of EC patients. Added LCA to block LCA recognized glycans could inhibit the migration and invasion of EC cells. Further analysis revealed that blocking the biosynthesis of LCA-binding glycans by tunicamycin attenuated cellular migratory and invasive abilities. Additionally, a membrane glycoprotein CD147 was recognized as a binder of LCA. There was a positive correlation between LCA-binding glycans and CD147 expression in clinical samples. Interestingly, CD147 inhibition also reduced cell migration and invasion. These findings indicated that LCA-binding glycans may function as a novel indicator to predict metastasis for patients with EC.

20.
Dis Markers ; 2020: 6520259, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31998417

RESUMEN

BACKGROUND: Previous studies have demonstrated that P21 (WAF1/CIP1) is a valuable prognostic factor in several malignant tumors. However, it is not known whether P21 can predict the prognosis in patients with esophageal cancer (EC). The aim of this research was to investigate the contribution of P21 expression to the clinicopathological characteristics and of EC. METHODS: A systematic review and meta-analysis of study focusing on P21 expression, clinicopathological characteristics, and clinical outcomes in patients with EC was performed using seven databases (PubMed, Embase, Web of Science, and four Chinese databases). Pooled hazard ratios and odds ratios were used to explore the association between P21 expression, clinicopathological characteristics, and outcomes in patients with EC. The heterogeneity of the studies was classified by the I 2 statistic. The sensitivity analysis was then utilized to assess the robustness of the results. Finally, the funnel plot and Begg's test were used to evaluate the publication bias. RESULTS: Forty-five studies with 3098 patients were eligible for inclusion in the meta-analysis. Thirty of these studies reported on clinicopathological characteristics and 15 on clinical outcomes. The pooled hazard ratio of 1.456 (95% confidence intervals 1.033-2.053, P = 0.032) for overall survival indicated that a low P21 expression level was an unfavorable prognostic factor for a clinical outcome in patients with EC. Furthermore, the pooled odds ratio confirmed an association between decreased P21 expression and poor clinicopathological characteristics, including differentiation, lymph node metastasis, invasion, and higher grade and clinical stage. Notably, high P21 expression was a significant predictor of a favorable response to chemotherapy. There was no evidence of publication bias. CONCLUSION: Reduced P21 expression is associated with a poor outcome in patients with EC.


Asunto(s)
Biomarcadores de Tumor/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Neoplasias Esofágicas/metabolismo , Biomarcadores de Tumor/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Humanos , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA