Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 43(5): 726-738, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951065

RESUMEN

BACKGROUND: S1P (sphingosine-1-phosphate) has been reported to possess vasodilatory properties, but the underlying pathways are largely unknown. METHODS: Isolated mouse mesenteric artery and endothelial cell models were used to determine S1P-induced vasodilation, intracellular calcium, membrane potentials, and calcium-activated potassium channels (KCa2.3 and KCa3.1 [endothelial small- and intermediate-conductance calcium-activated potassium channels]). Effect of deletion of endothelial S1PR1 (type 1 S1P receptor) on vasodilation and blood pressure was evaluated. RESULTS: Mesenteric arteries subjected to acute S1P stimulation displayed a dose-dependent vasodilation response, which was attenuated by blocking endothelial KCa2.3 or KCa3.1 channels. In cultured human umbilical vein endothelial cells, S1P stimulated immediate membrane potential hyperpolarization following activation of KCa2.3/KCa3.1 with elevated cytosolic Ca2+. Further, chronic S1P stimulation enhanced expression of KCa2.3 and KCa3.1 in human umbilical vein endothelial cells in dose- and time-dependent manners, which was abolished by disrupting either S1PR1-Ca2+ signaling or downstream Ca2+-activated calcineurin/NFAT (nuclear factor of activated T-cells) signaling. By combination of bioinformatics-based binding site prediction and chromatin immunoprecipitation assay, we revealed in human umbilical vein endothelial cells that chronic activation of S1P/S1PR1 promoted NFATc2 nuclear translocation and binding to promoter regions of KCa2.3 and KCa3.1 genes thus to upregulate transcription of these channels. Deletion of endothelial S1PR1 reduced expression of KCa2.3 and KCa3.1 in mesenteric arteries and exacerbated hypertension in mice with angiotensin II infusion. CONCLUSIONS: This study provides evidence for the mechanistic role of KCa2.3/KCa3.1-activated endothelium-dependent hyperpolarization in vasodilation and blood pressure homeostasis in response to S1P. This mechanistic demonstration would facilitate the development of new therapies for cardiovascular diseases associated with hypertension.


Asunto(s)
Hipertensión , Vasodilatación , Ratones , Humanos , Animales , Presión Sanguínea , Endotelio/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Homeostasis , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
2.
Cell Mol Life Sci ; 80(2): 38, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629913

RESUMEN

BACKGROUND: Vascular endothelial dysfunction is regarded as an early event of hypertension. Galectin-3 (Gal-3) is known to participate in various pathological processes. Whilst previous studies showed that inhibition of Gal-3 effectively ameliorates angiotensin II (Ang II)-induced atherosclerosis or hypertension, it remains unclear whether Ang II regulates Gal-3 expression and actions in vascular endothelium. METHODS: Using techniques of molecular biology and myograph, we investigated Ang II-mediated changes in Gal-3 expression and activity in thoracic aortas and mesenteric arteries from wild-type and Gal-3 gene deleted (Gal-3-/-) mice and cultured endothelial cells. RESULTS: The serum level of Gal-3 was significantly higher in hypertensive patients or in mice with chronic Ang II-infusion. Ang II infusion to wild-type mice enhanced Gal-3 expression in the aortic and mesenteric arteries, elevated systolic blood pressure and impaired endothelium-dependent relaxation of the thoracic aortas and mesenteric arteries, changes that were abolished in Gal-3-/- mice. In human umbilical vein endothelial cells, Ang II significantly upregulated Gal-3 expression by promoting nuclear localization of Yes-associated protein (YAP) and its interaction with transcription factor Tead1 with enhanced YAP/Tead1 binding to Gal-3 gene promoter region. Furthermore, Gal-3 deletion augmented the bioavailability of nitric oxide, suppressed oxidative stress, and alleviated inflammation in the thoracic aorta of Ang II-infused mice or endothelial cells exposed to Ang II. CONCLUSIONS: Our results demonstrate for the first time that Ang II upregulates Gal-3 expression via increment in YAP nuclear localization in vascular endothelium, and that Gal-3 mediates endothelial dysfunction contributing to the development of hypertension.


Asunto(s)
Angiotensina II , Hipertensión , Ratones , Humanos , Animales , Angiotensina II/farmacología , Angiotensina II/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Hipertensión/metabolismo , Transducción de Señal , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Endotelio Vascular/metabolismo , Presión Sanguínea
3.
J Cell Mol Med ; 27(10): 1436-1441, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37073435

RESUMEN

Wolf-Hirschhorn syndrome candidate 1 (WHSC1) is a transcriptional regulatory protein that encodes a histone methyltransferase to control H3K36me2 modification. WHSC1 was upregulated and associated with poor prognosis in HCC. The elevated WHSC1 likely due to the alterations of DNA methylation or RNA modification. WHSC1 perhaps form a chromatin cross talk with H3K27me3 and DNA methylation to regulate transcription factors expression in HCC. Functional analysis indicated that WHSC1 was involved in DNA damage repair, cell cycle, cellular senescence and immune regulations. Furthermore, WHSC1 was associated with the infiltrating levels of B cell, CD4+, Tregs and macrophage cells. Therefore, our findings suggested that WHSC1 might function as a promotor regulator to affect the development and progression of HCC. Thus, WHSC1 could be a potential biomarker in predicting the prognosis and therapeutic target for patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Senescencia Celular/genética , Daño del ADN/genética , Histonas/genética , Histonas/metabolismo , Inmunidad , Neoplasias Hepáticas/genética , Proteínas Represoras/genética , Factores de Transcripción/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 324(4): H528-H541, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36867446

RESUMEN

Takotsubo syndrome (TTS) is characterized by short-term contractile dysfunction with its mechanism undefined. We showed that activation of cardiac Hippo pathway mediates mitochondrial dysfunction and that stimulation of ß-adrenoceptors (ßAR) activates Hippo pathway. Here, we investigated the role of ßAR-Hippo signaling in mediating mitochondrial dysfunction in isoproterenol (Iso)-induced TTS-like mouse model. Elderly postmenopausal female mice were administered with Iso (1.25 mg/kg/h for 23 h). Cardiac function was determined by serially echocardiography. At days 1 and 7 post-Iso exposure, mitochondrial ultrastructure and function were examined by electron microscopy and various assays. Alterations in cardiac Hippo pathway and effects of genetic inactivation of Hippo kinase (Mst1) on mitochondrial damage and dysfunction in the acute phase of TTS were investigated. Isoproterenol exposure induced acute increase in biomarkers of cardiac damage and ventricular contractile dysfunction and dilation. At day 1 post-Iso, we observed extensive abnormalities in mitochondrial ultrastructure, downregulation of mitochondrial marker proteins, and mitochondrial dysfunction evidenced by lower ATP content, increased lipid droplets, higher contents of lactate, and augmented reactive oxygen species (ROS). All changes were reversed by day 7. ßAR stimulation led to activation of cardiac Hippo pathway with enhanced expression of Hippo kinase Mst1 and inhibitory YAP phosphorylation, as well as reduced nuclear YAP-TEAD1 interaction. In mice with cardiac expression of inactive mutant Mst1 gene, acute mitochondrial damage and dysfunction were mitigated. Stimulation of cardiac ßAR activates Hippo pathway that mediates mitochondrial dysfunction with energy insufficiency and enhanced ROS, promoting acute but short-term ventricular dysfunction.NEW & NOTEWORTHY Takotsubo syndrome (TTS) is featured by activation of sympatho-ß-adrenoceptor (ßAR) system leading to acute loss of ventricular contractile performance. However, the molecular mechanism remains undefined. We demonstrated, in an isoproterenol-induced murine TTS-like model, extensive mitochondrial damage, metabolic dysfunction, and downregulated mitochondrial marker proteins, changes temporarily associated with cardiac dysfunction. Mechanistically, stimulation of ßAR activated Hippo signaling pathway and genetic inactivation of Mst1 kinase ameliorated mitochondrial damage and metabolic dysfunction at the acute phase of TTS.


Asunto(s)
Vía de Señalización Hippo , Cardiomiopatía de Takotsubo , Femenino , Ratones , Animales , Cardiomiopatía de Takotsubo/inducido químicamente , Isoproterenol , Especies Reactivas de Oxígeno , Modelos Animales de Enfermedad , Receptores Adrenérgicos beta
5.
BMC Cancer ; 23(1): 1161, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017425

RESUMEN

BACKGROUND: Cantharidin (CTD) is the active ingredient of Chinese medicine, which has been traditionally used in multiple cancers treatment, especially in hepatocellular carcinoma (HCC). However, a comprehensive analysis of the CTD-related molecular mechanism is still necessary to understand its functions in HCC treatment. This study aimed to reveal the novel molecular targets and regulatory networks of CTD in HCC. METHODS: A model of H22 tumour-bearing mice was constructed, and the function of CTD in tumour growth was evaluated. An integrated approach of CTD associated transcriptional profiling and biological systems analysis was used to identify key regulators involved in antitumour pathways. The identified differential expression patterns were supported by the results of Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyse, and by protein-protein interaction (PPI) network construction. The relationships between gene expression and tumour immunity were evaluated using Tumour Immune Estimation Resource (TIMER). Prognostic value was analyzed with Kaplan-Meier plotter. RESULTS: In the present study, the therapeutic effect of CTD on HCC was evaluated in vivo. We obtained the CTD-related transcriptional profiles, systematically and intuitively illustrated its possible pharmacological mechanisms in HCC through multiple targets and signalling pathways. These results revealed that the CTD-related differentially expressed genes were involved in autophagy, transcription factors (TFs) related transcriptional regulation, fatty acid metabolism and immune response in HCC. We found that MAPT, TOP2A, CENPF and MEFV were hub genes of CTD targets involved in autophagy regulation. Totally, 14 TFs have been confirmed to be critical for transcriptional regulation, and 33 TF targets were identified as the hub genes in transcriptional mis-regulation pathway in cancer. These TFs were associated with the immune response and immune cell infiltration. In addition, the downregulated genes were significantly enriched in metabolic regulation pathways, especially fatty acid metabolism after CTD treatment. Furthermore, the network of CTD associated miRNAs with these fatty acid metabolism-related targets was constructed in HCC. CONCLUSIONS: Taken together, our results comprehensively elucidated that CTD could act on multiple targets in HCC therapy, affecting autophagy, transcriptional regulation, the immune response and fatty acid metabolism. Our results provide a foundation for the study of the molecular mechanistic of CTD and its clinical application in the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Cantaridina/farmacología , Cantaridina/uso terapéutico , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Ácidos Grasos , Biología Computacional/métodos
6.
J Cardiovasc Pharmacol ; 81(4): 259-269, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36668724

RESUMEN

ABSTRACT: Mitochondrial dysfunction plays a key role in the development of heart failure, but targeted therapeutic interventions remain elusive. Previous studies have shown coenzyme Q10 (CoQ10) insufficiency in patients with heart disease with undefined mechanism and modest effectiveness of CoQ10 supplement therapy. Using 2 transgenic mouse models of cardiomyopathy owing to cardiac overexpression of Mst1 (Mst1-TG) or ß 2 -adrenoceptor (ß 2 AR-TG), we studied changes in cardiac CoQ10 content and alterations in CoQ10 biosynthesis genes. We also studied in Mst1-TG mice effects of CoQ10, delivered by oral or injection regimens, on both cardiac CoQ10 content and cardiomyopathy phenotypes. High performance liquid chromatography and RNA sequencing revealed in both models significant reduction in cardiac content of CoQ10 and downregulation of most genes encoding CoQ10 biosynthesis enzymes. Mst1-TG mice with 70% reduction in cardiac CoQ10 were treated with CoQ10 either by oral gavage or i.p. injection for 4-8 weeks. Oral regimens failed in increasing cardiac CoQ10 content, whereas injection regimen effectively restored the cardiac CoQ10 level in a time-dependent manner. However, CoQ10 restoration in Mst1-TG mice did not correct mitochondrial dysfunction measured by energy metabolism, downregulated expression of marker proteins, and oxidative stress nor to preserve cardiac contractile function. In conclusion, mouse models of cardiomyopathy exhibited myocardial CoQ10 deficiency likely due to suppressed endogenous synthesis of CoQ10. In contrast to ineffectiveness of oral administration, CoQ10 administration by injection regimen in cardiomyopathy mice restored cardiac CoQ10 content, which, however, failed in achieving detectable efficacy at molecular and global functional levels.


Asunto(s)
Cardiomiopatías , Ubiquinona , Ratones , Animales , Ubiquinona/metabolismo , Ubiquinona/uso terapéutico , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/genética , Corazón , Ratones Transgénicos
7.
BMC Gastroenterol ; 23(1): 8, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631750

RESUMEN

The spermatogenesis associated serine rich 2 (SPATS2) is a member of RNA-binding protein in which the abnormal expression is linked with carcinogenesis in serval types of cancer. However, there is no systematic study on the differential expression, prognostic significance, epigenetic regulation, immune infiltration of SPATS2 in hepatocellular carcinoma (HCC). In the present study, we investigated the expression, prognosis, epigenetic regulation, and immune cell infiltration of SPATS2 in HCC. We found that the elevated expression of SPATS2 was unfavorably associated with the clinical pathological stage and prognosis. Functional enrichment analysis revealed that SPATS2 is associated with cell cycle, apoptosis and cancer cell metastasis processes in HCC. Our results confirmed that knockdown of SPATS2 will affect cell cycle, apoptosis and invasion of HCC cell lines. Moreover, the expression of SPATS2 is upregulated by epigenetic regulation, including DNA methylation, m6A and histone modification in HCC. In addition, SPATS2 expression was positively correlated with immune cell infiltration or expression of immune related gene markers in HCC. Taken together, our data demonstrated that SPATS2 is associated with progression and immune infiltration, and could serve as a prognostic biomarker for HCC. In conclusion, these results highlight the potential of SPATS2 to be used as a therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/genética , Epigénesis Genética , Neoplasias Hepáticas/genética , Ciclo Celular , Apoptosis , Pronóstico , Proteínas
8.
J Cell Mol Med ; 24(15): 8505-8517, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32578931

RESUMEN

Activation of the sympatho-ß-adrenergic receptors (ß-ARs) system is a hallmark of heart failure, leading to fibrosis and arrhythmias. Connexin 43 (Cx43) is the most abundant gap junctional protein in the myocardium. Current knowledge is limited regarding Cx43 remodelling in diverse cell types in the diseased myocardium and the underlying mechanism. We studied cell type-dependent changes in Cx43 remodelling due to ß-AR overactivation and molecular mechanisms involved. Mouse models of isoproterenol stimulation or transgenic cardiomyocyte overexpression of ß2 -AR were used, which exhibited cardiac fibrosis and up-regulated total Cx43 abundance. In both models, whereas Cx43 expression in cardiomyocytes was reduced and more laterally distributed, fibroblasts exhibited elevated Cx43 expression and enhanced gap junction communication. Mechanistically, activation of ß2 -AR in fibroblasts in vitro elevated Cx43 expression, which was abolished by the ß2 -antagonist ICI-118551 or protein kinase A inhibitor H-89, but simulated by the adenylyl cyclase activator forskolin. Our in vitro and in vivo data showed that ß-AR activation-induced production of IL-18 sequentially stimulated Cx43 expression in fibroblasts in a paracrine fashion. In summary, our findings demonstrate a pivotal role of ß-AR in mediating distinct and cell type-dependent changes in the expression and distribution of Cx43, leading to pathological gap junction remodelling in the myocardium.


Asunto(s)
Conexina 43/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Células Cultivadas , Conexinas/metabolismo , Fibroblastos/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Propanolaminas/farmacología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
9.
FASEB J ; 33(12): 14760-14771, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31690106

RESUMEN

Chronic islet inflammation is associated with development of type 2 diabetes mellitus (T2DM). Intermediate-conductance calcium-activated K+ (KCa3.1) channel plays an important role in inflammatory diseases. However, the role and regulation of KCa3.1 in pancreatic ß cells in progression of T2DM remain unclarified. In the present study, we evaluated the effect of the specific KCa3.1 channel blocker 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) on diabetic phenotype in the db/db model. In diabetic mice, blockade of KCa3.1 significantly improved glucose tolerance, enhanced secretion of postprandial insulin level, and reduced loss of ß-cell mass through attenuating the expression and secretion of inflammatory mediators. Furthermore, in cultured pancreatic ß cells, exposure to high levels of glucose or palmitic acid significantly increased expression and current density of the KCa3.1 channel as well as secretion of proinflammatory chemokines, and the effects were similarly reversed by preincubation with TRAM-34 or a NF-κB inhibitor pyrrolidinedithiocarbamate. Additionally, expression of KCa3.1 in pancreas islet cells was up-regulated by activation of NF-κB with IL-1ß stimulation. In summary, up-regulated KCa3.1 due to activation of NF-κB pathway leads to pancreatic inflammation via expression and secretion of chemokines and cytokines by pancreatic ß cells, thereby facilitating progression of T2DM.-Pang, Z.-D., Wang, Y., Wang, X.-J., She, G., Ma, X.-Z., Song, Z., Zhao, L.-M., Wang, H.-F., Lai, B.-C., Gou, W., Du, X.-J., Deng, X.-L. KCa3.1 channel mediates inflammatory signaling of pancreatic ß cells and progression of type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Transducción de Señal , Animales , Glucemia/metabolismo , Línea Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/prevención & control , Insulina/sangre , Células Secretoras de Insulina/efectos de los fármacos , Interleucina-1beta/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico
10.
Exp Cell Res ; 383(2): 111552, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31415760

RESUMEN

Elevated plasma free fatty acids level has been implicated in the development of insulin resistance, inflammation, and endothelial dysfunction in diabetic and nondiabetic individuals. However, the underlying mechanisms still remain to be defined. Herein, we investigated the effect of palmitic acid (PA), the most abundant saturated fatty acid in the human body, on small-conductance Ca2+-activated potassium channels (KCa2.3)-mediated relaxation in rodent resistance arteries and the underlying molecular mechanism. The effect of PA on KCa2.3 in endothelium was evaluated using real-time PCR, Western blotting, whole-cell patch voltage-clamp, wire and pressure myograph system, and reactive oxygen species (ROS) were measured by using dihydroethidium and 2', 7'-dichlorofluorescein diacetate. KCa2.3-mediated vasodilatation responses to acetylcholine and NS309 (agonist of KCa2.3 and KCa3.1) were impaired by incubation of normal mesenteric arteries with 100 µM PA for 24 h. In cultured human umbilical vein endothelial cells (HUVECs), PA decreased KCa2.3 current and expression at mRNA and protein levels. Incubation with the NADPH oxidase (Nox) inhibitor dibenziodolium (DPI) partly inhibited the PA-induced ROS production and restored KCa2.3 expression. Inhibition of either p38-MAPK or NF-κB using specific inhibitors (SB203580, SB202190 or Bay11-7082, pyrrolidinedithiocarbamate) attenuated PA-induced downregulation of KCa2.3 and inhibition of p38-MAPK also attenuated PA-induced phosphorylation of NF-κB p65. Furthermore, DPI reversed the increment of phospho-p38-MAPK by PA. These results demonstrated that PA downregulated KCa2.3 expressions via Nox/ROS/p38-MAPK/NF-κB signaling leading to endothelial vasodilatory dysfunction.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ácido Palmítico/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiología , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Exp Cell Res ; 369(2): 208-217, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29792849

RESUMEN

Monocyte migration into diseased tissues contributes to the pathogenesis of diseases. Intermediate-conductance Ca2+-activated K+ (KCa3.1) channels play an important role in cell migration. However, the role of KCa3.1 channels in mediating monocyte migration induced by palmitic acid (PA) is still unclear. Using cultured THP-1 cells and peripheral blood mononuclear cells from healthy subjects, we investigated the role and signaling mechanisms of KCa3.1 channels in mediating the migration induced by PA. Using methods of Western blotting analysis, RNA interference, cell migration assay and ELISA, we found that PA-treated monocytes exhibited increment of the protein levels of KCa3.1 channel and monocyte chemoattractant protein-1 (MCP-1), and the effects were reversed by co-incubation of PA with anti-TLR2/4 antibodies or by specific inhibitors of p38-MAPK, or NF-κB. In addition, PA increased monocyte migration, which was abolished by a specific KCa3.1 channel blocker, TRAM-34, or KCa3.1 small interfering RNA (siRNA). The expression and secretion of MCP-1 induced by PA was also similarly prevented by TRAM-34 and KCa3.1 siRNA. These results demonstrate for the first time that PA upregulates KCa3.1 channels through TLR2/4, p38-MAPK and NF-κB pathway to promote the expression of MCP-1, and then induce the trans-endothelial migration of monocytes.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Monocitos/efectos de los fármacos , Monocitos/fisiología , Ácido Palmítico/farmacología , Quimiocina CCL2/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Pirazoles/farmacología , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Células THP-1 , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba/efectos de los fármacos
12.
J Cell Mol Med ; 21(9): 1826-1834, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28294531

RESUMEN

The present study was designed to investigate whether large conductance Ca2+ -activated K+ (BK) channels were regulated by epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase. BK current and channel tyrosine phosphorylation level were measured in BK-HEK 293 cells expressing both functional α-subunits and the auxiliary ß1-subunits using electrophysiology, immunoprecipitation and Western blotting approaches, respectively, and the function of rat cerebral basilar arteries was determined with a wire myography system. We found that BK current in BK-HEK 293 cells was increased by the broad spectrum protein tyrosine kinase (PTK) inhibitor genistein and the selective EGFR tyrosine kinase inhibitor AG556, one of the known tyrphostin. The effect of genistein or AG556 was antagonized by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. On the other hand, orthovanadate or EGF decreased BK current, and the effect was counteracted by AG556. The tyrosine phosphorylation level of BK channels (α- and ß1-subunits) was increased by EGF and orthovanadate, while decreased by genistein and AG556, and the reduced tyrosine phosphorylation of BK channels by genistein or AG556 was reversed by orthovanadate. Interestingly, AG556 induced a remarkable enhancement of BK current in rat cerebral artery smooth muscle cells and relaxation of pre-contracted rat cerebral basilar arteries with denuded endothelium, and these effects were antagonized by the BK channel blocker paxilline or orthovanadate. These results demonstrate that tyrosine phosphorylation of BK channels by EGFR kinase decreases the channel activity, and inhibition of EGFR kinase by AG556 enhances the channel activity and dilates rat cerebral basilar arteries.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Tirfostinos/farmacología , Animales , Arteria Basilar/citología , Separación Celular , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/metabolismo , Genisteína/farmacología , Células HEK293 , Humanos , Indoles/farmacología , Activación del Canal Iónico/efectos de los fármacos , Masculino , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Subunidades de Proteína/metabolismo , Ratas Sprague-Dawley , Vanadatos/farmacología , Vasodilatación/efectos de los fármacos
13.
Pharmacol Res ; 107: 186-194, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26995303

RESUMEN

The present study was designed to investigate the effect of equol on cerebral blood flow and the underlying molecular mechanisms. The regional cerebral blood flow in parietal lobe of rats was measured by using a laser Doppler flowmetry. Isolated cerebral basilar artery and mesenteric artery rings from rats were used for vascular reactivity measurement with a multi wire myography system. Outward K(+) current in smooth muscle cells of cerebral basilar artery, large-conductance Ca(2+)-activated K(+) (BK) channel current in BK-HEK 293 cells stably expressing both human α (hSlo)- and ß1-subunits, and hSlo channel current in hSlo-HEK 293 cells expressing only the α-subunit of BK channels were recorded with whole cell patch-clamp technique. The results showed that equol significantly increased regional cerebral blood flow in rats, and produced a concentration-dependent but endothelium-independent relaxation in rat cerebral basilar arteries. Both paxilline and iberiotoxin, two selective BK channel blockers, significantly inhibited equol-induced vasodilation in cerebral arteries. Outward K(+) currents in smooth muscle cells of cerebral basilar artery were increased by equol and fully reversed by washout or blockade of BK channels with iberiotoxin. Equol remarkably enhanced human BK current in BK-HEK 293 cells, but not hSlo current in hSlo-HEK 293 cells, and the increase was completely abolished by co-application of paxilline. Our findings provide the first information that equol selectively stimulates BK channel current by acting on its ß1 subunit, which may in turn contribute to the equol-mediated vasodilation and cerebral blood flow increase.


Asunto(s)
Circulación Cerebrovascular/efectos de los fármacos , Equol/farmacología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/fisiología , Células HEK293 , Humanos , Técnicas In Vitro , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/fisiología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Ratas , Ratas Sprague-Dawley , Vasodilatación/efectos de los fármacos
14.
Pflugers Arch ; 467(11): 2275-85, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25715999

RESUMEN

The intermediate-conductance Ca(2+)-activated K(+) (KCa3.1) channels play a pivotal role in the proliferation and collagen secretion of cardiac fibroblasts. However, their contribution in cardiac fibrosis remains unknown. This study was designed to investigate whether KCa3.1 channels mediate the development of cardiac fibrosis. Pressure-overloaded rats were induced by abdominal aortic constriction and treated without or with KCa3.1 blocker (TRAM-34) or angiotensin type 1 receptor blocker (losartan) for 2 weeks. Besides the increase of blood pressure, angiotensin (Ang) II level in the plasma and myocardium, left ventricle mass and hydroxyproline concentration, myocardial hypertrophy, as well as significant collagen deposition in the perivascular regions and interstitium of the myocardium were observed in pressure-overloaded rats. The expression of leukocyte differentiation antigens (CD45 and CD3), macrophage surface marker (F4/80), tumor necrosis factor alpha, and monocyte chemotactic protein-1 (MCP-1) also significantly increased. All these alterations were prevented by losartan and TRAM-34. TRAM-34 also reduced the increase of renin and angiotensinogen in the plasma and myocardium of pressure-overloaded rats. Ang II promoted the migration of monocytes through endothelial cells and the secretion of MCP-1 from human umbilical vein endothelial cells in vitro, which was inhibited by TRAM-34. In conclusion, the present study demonstrates that TRAM-34 alleviates cardiac fibrosis induced by pressure overload, which is related to its inhibitory action on KCa3.1 channels and Ang II level. Our findings indicate that the inhibition of KCa3.1 channels may represent a novel approach of preventing the progression of cardiac fibrosis, and also add to the already developing literature of promising targets for TRAM-34.


Asunto(s)
Miocardio/metabolismo , Miocardio/patología , Canales de Potasio Shaw/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Angiotensinógeno/sangre , Angiotensinógeno/metabolismo , Animales , Aorta Abdominal/efectos de los fármacos , Presión Sanguínea , Cardiomegalia/patología , Citocinas/metabolismo , Fibrosis , Hidroxiprolina/metabolismo , Losartán/farmacología , Masculino , Bloqueadores de los Canales de Potasio/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Renina/sangre , Renina/metabolismo , Canales de Potasio Shaw/antagonistas & inhibidores
15.
Mol Pharmacol ; 86(5): 580-91, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25123289

RESUMEN

The present study was designed to investigate the effect of metformin on the impairment of intermediate-conductance and small-conductance Ca(2+)-activated potassium channels (IKCa and SKCa)-mediated relaxation in diabetes and the underlying mechanism. The endothelial vasodilatation function of mesenteric arteries was assessed with the use of wire myography. Expression levels of IKCa and SKCa and phosphorylated Thr(172) of AMP-activated protein kinase (AMPK) were measured using Western blot technology. The channel activity was observed using a whole-cell patch voltage clamp. Reactive oxygen species (ROS) were measured using dihydroethidium and 2',7'-dichlorofluorescein diacetate. Metformin restored the impairment of IKCa- and SKCa-mediated vasodilatation in mesenteric arteries from streptozotocin-induced type 2 diabetic rats and that from normal rats incubated with advanced glycation end products (AGEs) for 3 hours. In cultured human umbilical vein endothelial cells (HUVECs), 1 µM metformin reversed AGE-induced increase of ROS and attenuated AGE- and H2O2- induced downregulation of IKCa and SKCa after long-term incubation (>24 hours). Short-term treatment (3 hours) with 1 µM metformin reversed the decrease of IKCa and SKCa currents induced by AGE incubation for 3 hours without changing the channel expression or the AMPK activation in HUVECs. These results are the first to demonstrate that metformin restored IKCa- and SKCa-mediated vasodilatation impaired by AGEs in rat mesenteric artery, in which the upregulation of channel activity and protein expression is likely involved.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Metformina/farmacología , Canales de Potasio Calcio-Activados/metabolismo , Vasodilatación/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
16.
Pflugers Arch ; 466(2): 307-17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23873353

RESUMEN

The present study was designed to investigate the role of advanced glycation end products (AGEs) in intermediate-conductance and small-conductance Ca(2+)-activated potassium channels (KCa3.1 and KCa2.3)-mediated relaxation in rat resistance arteries and the underlying mechanism. The endothelial function of mesenteric arteries was assessed with the use of wire myography. Expression levels of KCa3.1 and KCa2.3 were measured by using Western blot. Reactive oxygen species (ROS) were measured by using dihydroethidium and 2', 7'-dichlorofluorescein diacetate. KCa3.1 and KCa2.3-mediated vasodilatation responses to acetylcholine and NS309 (opener of KCa3.1 and KCa2.3) were impaired by incubation of the third-order mesenteric arteries from normal rats with AGEs (200 µg ml(-1) for 3 h). In cultured human umbilical vein endothelial cells (HUVECs), AGEs increased ROS level and decreased the protein expression of KCa3.1 and KCa2.3. Antioxidant alpha lipoic acid restored the impairment in both vasodilatation function and expression of KCa3.1 and KCa2.3. H2O2 could mimic the effect of AGEs on the protein expression of KCa3.1 and KCa2.3 in cultured HUVECs. These results demonstrate for the first time that AGEs impaired KCa3.1 and KCa2.3-mediated vasodilatation in rat mesenteric arteries via downregulation of both KCa3.1 and KCa2.3, in which the enhanced oxidative stress was involved.


Asunto(s)
Productos Finales de Glicación Avanzada/farmacología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Arterias Mesentéricas/fisiología , Estrés Oxidativo/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Alcanos/farmacología , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/biosíntesis , Masculino , Arterias Mesentéricas/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Pirazoles/farmacología , Compuestos de Quinolinio/farmacología , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/biosíntesis
17.
Biochem J ; 452(1): 121-9, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23496660

RESUMEN

SKCa (small-conductance Ca(2+)-activated K(+)) channels are widely distributed in different tissues, including the brain, pancreatic islets and myocardium and play an important role in controlling electrical activity and cellular functions. However, intracellular signal modulation of SKCa channels is not fully understood. The present study was designed to investigate the potential regulation of hSKCa1 (human SKCa1) channels by PTKs (protein tyrosine kinases) in HEK (human embryonic kidney)-293 cells expressing the hSKCa1 (KCNN1) gene using approaches of whole-cell patch voltage-clamp, immunoprecipitation, Western blotting and mutagenesis. We found that the hSKCa1 current was inhibited by the broad-spectrum PTK inhibitor genistein, the selective EGFR (epidermal growth factor receptor) kinase inhibitors T25 (tyrphostin 25) and AG556 (tyrphostin AG 556), but not by the Src-family kinases inhibitor PP2. The inhibitory effect of these PTK inhibitors was significantly antagonized by the PTP (protein tyrosine phosphatase) inhibitor orthovanadate. The tyrosine phosphorylation level of hSKCa1 channels was reduced by genistein, T25 or AG556. The reduced tyrosine phosphorylation was countered by orthovanadate. Interestingly, the Y109F mutant hSKCa1 channel lost the inhibitory response to T25 or AG556, and showed a dramatic reduction in tyrosine phosphorylation levels and a reduced current density. These results demonstrate the novel information that hSKCa1 channels are inhibited by genistein, T25 and AG556 via EGFR tyrosine kinase inhibition, which is related to the phosphorylation of Tyr(109) in the N-terminus. This effect may affect electrical activity and cellular functions in brain, pancreatic islets and myocardium.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Genisteína/farmacología , Células HEK293 , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/biosíntesis , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Tirfostinos/farmacología
18.
Lab Invest ; 93(2): 159-67, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23212096

RESUMEN

The mechanisms underlying the involvement of advanced glycation endproducts (AGEs) in diabetic atherosclerosis are not fully understood. The present study was designed to investigate whether intermediate-conductance Ca(2+)-activated K(+) channels (K(Ca)3.1 channels) are involved in migration and proliferation induced by AGEs in cultured rat vascular smooth muscle cells (VSMCs) using approaches of whole-cell patch voltage-clamp, cell proliferation and migration assay, and western blot analysis. It was found that the current density and protein level of K(Ca)3.1 channels were enhanced in cells incubated with AGE-BSA (bovine serum albumin), and the effects were reversed by co-incubation of AGE-BSA with anti-RAGE (anti-receptors of AGEs) antibody. The ERK1/2 inhibitors PD98059 and U0126, the P38-MAPK inhibitors SB203580 and SB202190, or the PI3K inhibitors LY294002 and wortmannin countered the K(Ca)3.1 channel expression by AGE-BSA. In addition, AGE-BAS increased cell migration and proliferation, and the effects were fully reversed with anti-RAGE antibody, the K(Ca)3.1 channel blocker TRAM-34, or K(Ca)3.1 small interfering RNA. These results demonstrate for the first time that AGEs-induced increase of migration and proliferation is related to the upregulation of K(Ca)3.1 channels in rat VMSCs, and the intracellular signals ERK1/2, P38-MAPK and PI3K are involved in the regulation of K(Ca)3.1 channel expression.


Asunto(s)
Movimiento Celular/fisiología , Proliferación Celular , Productos Finales de Glicación Avanzada/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Análisis de Varianza , Androstadienos , Animales , Western Blotting , Butadienos , Células Cultivadas , Cromonas , Flavonoides , Imidazoles , Morfolinas , Miocitos del Músculo Liso/metabolismo , Nitrilos , Técnicas de Placa-Clamp , Piridinas , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas , Albúmina Sérica Bovina , Transducción de Señal/genética , Transducción de Señal/fisiología , Wortmanina
19.
BMC Complement Med Ther ; 23(1): 160, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202806

RESUMEN

BACKGROUND: Cantharidin (CTD) is a major ingredient of cantharis (Mylabris phalerata Pallas) and has been used extensively in traditional Chinese medicines. It has been shown to exhibit anticancer activity in multiple types of cancer, especially hepatocellular carcinoma (HCC). However, there is no systematic study on the relationships among the regulatory networks of its targets in HCC therapy. We focused on histone epigenetic regulation and the influence of CTD on the immune response in HCC. METHODS: We performed a comprehensive analysis of novel CTD targets in HCC based on network pharmacology and RNA-seq approaches. The mRNA levels of target genes were analyzed by qRT-PCR, and the corresponding protein levels were confirmed using enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining (IHC). ChIP-seq data were visualized by IGV software. The associations of gene transcript levels with the cancer immune score and infiltration level were investigated using TIMER. In vivo, the H22 mouse model of hepatocellular carcinoma was established by treatment with CTD and 5-Fu. The immune cell proportions in the blood were elevated in model mice, as shown by flow cytometry. RESULTS: We identified 58 targets of CTD, which were involved in various pathways in cancer, including apoptosis, the cell cycle, EMT and immune pathways. Moreover, we found that 100 EMT-related genes were differentially expressed after CTD treatment in HCC cells. Interestingly, our results confirmed that the EZH2/H3K27me3 -related cell cycle pathway is a therapeutic target of CTD in antitumour. In addition, we evaluated the influence of CTD on the immune response. Our data showed that the significantly enriched gene sets were positively correlated with the chemokine biosynthetic and chemokine metabolic modules. The proportions of CD4+/CD8 + T cells and B cells were increased, but the proportion of Tregs was decreased after treatment with CTD in vivo. Moreover, we found that the expression of the inflammatory factor and immune checkpoint genes PD-1/PD-L1 was significantly reduced in the mouse model. CONCLUSION: We performed a novel integrated analysis of the potential role of CTD in HCC treatment. Our results provide innovative insight into the mechanism by which cantharidin exerts antitumour effects by regulating target genes expression to mediate apoptosis, EMT, cell cycle progression and the immune response in HCC. Based on the effect of CTD on the immune response, it can be used as a potential effective drug to activate antitumour immunity for the treatment of liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/genética , Cantaridina/farmacología , Histonas/genética , Histonas/metabolismo , Neoplasias Hepáticas/genética , Epigénesis Genética , Línea Celular Tumoral , Ciclo Celular , Inmunidad
20.
Theranostics ; 13(2): 560-577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632235

RESUMEN

Rationale: Chemotherapy is a common clinical strategy for cancer treatment. However, the accompanied cardiomyopathy renders cancer patients under risk of another life-threatening condition. Whereas Hippo pathway is known to play key roles in both cancerogenesis and heart disease, it remains unclear whether Hippo pathway activation mediates chemotherapy-induced cardiomyopathy. Methods and Results: In human breast cancer cells, doxorubicin (DOX) significantly induced upregulation of Hippo kinase Mst1, inhibitory phosphorylation of YAP, mitochondrial damage, reduced cell viability and increased apoptosis. Hippo pathway inactivation by Mst1-siRNA transfection effectively improved cell survival and mitigated mitochondrial damage and cell apoptosis. Another anti-cancer drug YAP inhibitor verteporfin also induced lower cancer cell viability, apoptosis and mitochondrial injury. Chronic treatment with DOX in vivo (4 mg/kg/week for 6 weeks) caused mitochondrial damage and dysfunction, oxidative stress and cardiac fibrosis, while acute DOX treatment (16 mg/kg single bolus) also induced myocardial oxidative stress and mitochondrial abnormalities. Chronic treatment with verteporfin (2 months) resulted in cardiomyopathy phenotypes comparable to that by chronic DOX regimen. In transgenic mice with cardiac overexpression of kinase-dead mutant Mst1 gene, these adverse cardiac effects of DOX were significantly attenuated relative to wild-type littermates. Conclusions: Anti-cancer action of both DOX and verteporfin is associated with Hippo pathway activation. Such action on cardiac Hippo pathway mediates mitochondrial damage and cardiomyopathy.


Asunto(s)
Antineoplásicos , Cardiomiopatías , Vía de Señalización Hippo , Neoplasias , Animales , Humanos , Ratones , Apoptosis , Cardiomiopatías/inducido químicamente , Cardiotoxicidad/etiología , Doxorrubicina/farmacología , Vía de Señalización Hippo/efectos de los fármacos , Ratones Transgénicos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Verteporfina/farmacología , Verteporfina/uso terapéutico , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA