Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Immunol ; 212(1): 24-34, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37975667

RESUMEN

Influenza viruses infect 5-30% of the world's population annually, resulting in millions of incidents of hospitalization and thousands of mortalities worldwide every year. Although annual vaccination has significantly reduced hospitalization rates in vulnerable populations, the current vaccines are estimated to offer a wide range of protection from 10 to 60% annually. Such incomplete immunity may be related to both poor antigenic coverage of circulating strains, as well as to the insufficient induction of protective immunity. Beyond the role of hemagglutinin (HA) and neuraminidase (NA), vaccine-induced Abs have the capacity to induce a broader array of Ab effector functions, including Ab-dependent cellular cytotoxicity, that has been implicated in universal immunity against influenza viruses. However, whether different vaccine platforms can induce functional humoral immunity in a distinct manner remains incompletely defined. In this study, we compared vaccine-induced humoral immune responses induced by two seasonal influenza vaccines in Homo sapiens, the i.m. inactivated vaccine (IIV/Fluzone) and the live attenuated mucosal vaccine (LAIV/FluMist). Whereas the inactivated influenza vaccine induced superior Ab titers and FcγR binding capacity to diverse HA and NA Ags, the live attenuated influenza mucosal vaccine induced a more robust functional humoral immune response against both the HA and NA domains. Multivariate Ab analysis further highlighted the significantly different overall functional humoral immune profiles induced by the two vaccines, marked by differences in IgG titers, FcR binding, and both NK cell-recruiting and opsonophagocytic Ab functions. These results highlight the striking differences in Ab Fc-effector profiles induced systemically by two distinct influenza vaccine platforms.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Humanos , Inmunidad Humoral , Estaciones del Año , Vacunación , Hemaglutininas , Vacunas Atenuadas , Vacunas de Productos Inactivados , Anticuerpos Antivirales
2.
STAR Protoc ; 5(1): 102858, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294907

RESUMEN

In deep tissue, optogenetics faces limitations with visible light. Here, we present a protocol for near-infrared (NIR) optogenetics manipulation of neurons and motor behavior in Caenorhabditis elegans using emissive upconversion nanoparticles (UCNPs). We describe steps for synthesizing and modifying UCNPs. We then detail procedures for regulating neurons using these UCNPs in the model organism C. elegans. Using NIR light allows for superior tissue penetration to manipulate neuronal activities and locomotion behavior. For complete details on the use and execution of this protocol, please refer to Guo et al.,1 Ao et al.,2 and Zhang et al.3.


Asunto(s)
Caenorhabditis elegans , Nanopartículas , Animales , Optogenética/métodos , Neuronas/fisiología , Luz
3.
medRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585939

RESUMEN

The on-going diversification of influenza virus necessicates annual vaccine updating. The vaccine antigen, the viral spike protein hemagglutinin (HA), tends to elicit strain-specific neutralizing activity, predicting that sequential immunization with the same HA strain will boost antibodies with narrow coverage. However, repeated vaccination with homologous SARS-CoV-2 vaccine eventually elicits neutralizing activity against highly unmatched variants, questioning this immunological premise. We evaluated a longitudinal influenza vaccine cohort, where each year the subjects received the same, novel H1N1 2009 pandemic vaccine strain. Repeated vaccination gradually enhanced receptor-blocking antibodies (HAI) to highly unmatched H1N1 strains within individuals with no initial memory recall against these historical viruses. An in silico model of affinity maturation in germinal centers integrated with a model of differentiation and expansion of memory cells provides insight into the mechanisms underlying these results and shows how repeated exposure to the same immunogen can broaden the antibody response against diversified targets.

4.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260501

RESUMEN

In systemic lupus erythematosus, recent findings highlight the extrafollicular (EF) pathway as prominent origin of autoantibody-secreting cells (ASCs). CD21loCD11c+ B cells, associated with aging, infection, and autoimmunity, are contributors to autoreactive EF ASCs but have an obscure developmental trajectory. To study EF kinetics of autoreactive B cell in tissue, we adoptively transferred WT and gene knockout B cell populations into the 564Igi mice - an autoreactive host enriched with autoantigens and T cell help. Time-stamped analyses revealed TLR7 dependence in early escape of peripheral B cell tolerance and establishment of a pre-ASC division program. We propose CD21lo cells as precursors to EF ASCs due to their elevated TLR7 sensitivity and proliferative nature. Blocking receptor function reversed CD21 loss and reduced effector cell generation, portraying CD21 as a differentiation initiator and a possible target for autoreactive B cell suppression. Repertoire analysis further delineated proto-autoreactive B cell selection and receptor evolution toward self-reactivity. This work elucidates receptor and clonal dynamics in EF development of autoreactive B cells, and establishes modular, native systems to probe mechanisms of autoreactivity.

5.
Nat Commun ; 15(1): 905, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291080

RESUMEN

Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we use a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 µg). Responses are compared with vaccinated adults (100 µg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicit a functional antibody response as strong as adults, with higher antibody-dependent phagocytosis compared to adults, without report of side effects. Moreover, mRNA vaccination is associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Lactante , Humanos , Preescolar , Vacuna nCoV-2019 mRNA-1273 , COVID-19/prevención & control , Vacunación , Inmunidad Humoral , ARN Mensajero , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA