Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol ; 146(3): 499-514, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495858

RESUMEN

Immunodeficiency-associated primary CNS lymphoma (PCNSL) represents a distinct clinicopathological entity, which is typically Epstein-Barr virus-positive (EBV+) and carries an inferior prognosis. Genetic alterations that characterize EBV-related CNS lymphomagenesis remain unclear precluding molecular classification and targeted therapies. In this study, a comprehensive genetic analysis of 22 EBV+ PCNSL, therefore, integrated clinical and pathological information with exome and RNA sequencing (RNASeq) data. EBV+ PCNSL with germline controls carried a median of 55 protein-coding single nucleotide variants (SNVs; range 24-217) and 2 insertions/deletions (range 0-22). Genetic landscape was largely shaped by aberrant somatic hypermutation with a median of 41.01% (range 31.79-53.49%) of SNVs mapping to its target motifs. Tumors lacked established SNVs (MYD88, CD79B, PIM1) and copy number variants (CDKN2A, HLA loss) driving EBV- PCNSL. Instead, EBV+ PCNSL were characterized by SOCS1 mutations (26%), predicted to disinhibit JAK/STAT signaling, and mutually exclusive gain-of-function NOTCH pathway SNVs (26%). Copy number gains were enriched on 11q23.3, a locus directly targeted for chromosomal aberrations by EBV, that includes SIK3 known to protect from cytotoxic T-cell responses. Losses covered 5q31.2 (STING), critical for sensing viral DNA, and 17q11 (NF1). Unsupervised clustering of RNASeq data revealed two distinct transcriptional groups, that shared strong expression of CD70 and IL1R2, previously linked to tolerogenic tumor microenvironments. Correspondingly, deconvolution of bulk RNASeq data revealed elevated M2-macrophage, T-regulatory cell, mast cell and monocyte fractions in EBV+ PCNSL. In addition to novel insights into the pathobiology of EBV+ PCNSL, the data provide the rationale for the exploration of targeted therapies including JAK-, NOTCH- and CD70-directed approaches.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Mutación , Pronóstico , Linfoma/genética , Microambiente Tumoral
2.
Org Biomol Chem ; 21(41): 8306-8319, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37794804

RESUMEN

Methylphosphorylated mono-, di- and trimannosides structurally related to the lipopolysaccharide (LPS) O-antigens of Klebsiella pneumoniae of serotype O3 were synthesized and conjugated with a biotin tag. The stereo- and regioselective assembly of target carbohydrate chains was conducted using uniform monosaccharide synthetic blocks. After that, a methylphosphate group was introduced by coupling with a methyl-H-phosphonate reagent followed by oxidation and deprotection to give the target oligosaccharides. The 1H and 13C NMR spectra of the obtained compounds showed a good fit with the spectrum of the corresponding natural polysaccharide. The newly prepared biotinylated oligosaccharides along with the previously reported biotinylated glycoconjugates related to galactan I and galactan II of K. pneumoniae LPS were used for the ELISA detection of antibodies in anti-K. pneumoniae rabbit sera. Anti-O3 serum antibodies specifically recognized the synthesized oligosaccharide ligands with terminal methylphosphomannosyl residues, whereas anti-O1 serum antibodies recognized the oligosaccharide related to K. pneumoniae galactan II. The analysis of human sera from patients with confirmed Klebsiella infection also revealed the presence of antibodies against the synthesized oligosaccharides in clinical cases. Thus, the described compounds together with other Klebsiella related antigenic oligosaccharides could be potentially used as molecular probes for K. pneumoniae serological diagnostics development and strain serotyping.


Asunto(s)
Lipopolisacáridos , Antígenos O , Animales , Humanos , Conejos , Antígenos O/química , Klebsiella pneumoniae , Serogrupo , Oligosacáridos , Galactanos , Anticuerpos
3.
Int J Biol Macromol ; 256(Pt 1): 128369, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000592

RESUMEN

Synthesis of 0.4 ± 0.03 g/L per day of pure and porous bacterial cellulose (BC) scaffolds (scaffBC) and BC scaffolds modified with gelatin (scaffBC/Gel) was carried out using the Medusomyces gisevii Sa-28 bacterial strain. FT-IR spectroscopy and X-ray diffraction analysis showed that the scaffolds largely consist of crystalline cellulose I (Iα, Iß). Heating of BC with gelatin to 60 °C with subsequent lyophilization led to its modification by adsorption and binding of low-molecular fractions of gelatin and the formation of small pores between the fibers, which increased the biocompatibility and solubility of BC. The solubility of scaffBC and scaffBC/Gel was 20.8 % and 44.4 %, respectively, which enhances degradation in vivo. Light microscopy, scanning electron microscopy, and microcomputed tomography showed a uniform distribution of pores with a diameter of 100-500 µm. The chicken chorioallantoic membrane (CAM) model and subcutaneous implantation in rats confirmed low immunogenicity and intense formation of collagen fibers in both scaffolds and active germination of new blood vessels in scaffBC and scaffBC/Gel. The proliferative cellular activity of fibroblasts confirmed the safety of scaffolds. Taken together, the results obtained show that scaffBC/Gel can be used for the engineering of hard and soft tissues, which opens opportunities for further research.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ratas , Animales , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Gelatina/química , Celulosa/química , Espectroscopía Infrarroja por Transformada de Fourier , Microtomografía por Rayos X , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Porosidad
4.
Eur J Cancer ; 178: 216-226, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470093

RESUMEN

BACKGROUND: Adolescent and young adult (AYA) patients with cancer are poorly recruited to molecularly targeted trials and have not witnessed the advances in cancer treatment and survival seen in other age groups. We report here a pan-European proof-of-concept study to identify actionable alterations in some of the worst prognosis AYA cancers: bone and soft tissue sarcomas. DESIGN: Patients aged 12-29 years with newly diagnosed or recurrent, intermediate or high-grade bone and soft tissue sarcomas were recruited from six European countries. Pathological diagnoses were centrally reviewed. Formalin-fixed tissues were analysed by whole exome sequencing, methylation profiling and RNA sequencing and were discussed in a multidisciplinary, international molecular tumour board. RESULTS: Of 71 patients recruited, 48 (median 20 years, range 12-28) met eligibility criteria. Central pathological review confirmed, modified and re-classified the diagnosis in 41, 3, and 4 cases, respectively. Median turnaround time to discussion at molecular tumour board was 8.4 weeks. whole exome sequencing (n = 48), methylation profiling (n = 44, 85%) and RNA sequencing (n = 24, 50%) led to therapeutic recommendations for 81% patients, including 4 with germ line alterations. The most common were for agents targeted towards tyrosine kinases (n = 20 recommendations), DNA repair (n = 18) and the PI3K/mTOR/AKT pathway (n = 15). Recommendations were generally based on weak evidence such as activity in a different tumour type (n = 68, 61%), reflecting the dearth of relevant molecular clinical trial data in the same tumour type. CONCLUSIONS: We demonstrate here that comprehensive molecular profiling of AYA patients' samples is feasible and deliverable in a European programme.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Adolescente , Humanos , Adulto Joven , Europa (Continente) , Secuenciación del Exoma , Pronóstico , Sarcoma/genética , Sarcoma/terapia , Prueba de Estudio Conceptual
5.
Nucleic Acids Res ; 38(8): 2558-69, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20211840

RESUMEN

Most microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules. We cloned the genomes of Mycoplasma genitalium (0.6 Mb), M. pneumoniae (0.8 Mb) and M. mycoides subspecies capri (1.1 Mb) as yeast circular centromeric plasmids. These genomes appear to be stably maintained in a host that has efficient, well-established methods for DNA manipulation.


Asunto(s)
Clonación Molecular/métodos , Genoma Bacteriano , Mycoplasma/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Diploidia , Vectores Genéticos/química , Datos de Secuencia Molecular , Mycoplasma genitalium/genética , Mycoplasma mycoides/genética , Mycoplasma pneumoniae/genética , Recombinación Genética
6.
Cancer Gene Ther ; 29(6): 697-708, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34045664

RESUMEN

Malignant sweat gland tumours are rare, with the most common form being Eccrine porocarcinoma (EP). To investigate the mutational landscape of EP, we performed whole-exome sequencing (WES) on 14 formalin-fixed paraffin-embedded samples of matched primary EP and healthy surrounding tissue. Mutational profiling revealed a high overall median mutation rate. This was attributed to signatures of mutational processes related to ultraviolet (UV) exposure, APOBEC enzyme dysregulation, and defective homologous double-strand break repair. All of these processes cause genomic instability and are implicated in carcinogenesis. Recurrent driving somatic alterations were detected in the EP candidate drivers TP53, FAT2, CACNA1S, and KMT2D. The analyses also identified copy number alterations and recurrent gains and losses in several chromosomal regions including that containing BRCA2, as well as deleterious alterations in multiple HRR components. In accordance with this reduced or even a complete loss of BRCA2 protein expression was detected in 50% of the investigated EP tumours. Our results implicate crucial oncogenic driver pathways and suggest that defective homologous double-strand break repair and the p53 pathway are involved in EP aetiology. Targeting of the p53 axis and PARP inhibition, and/or immunotherapy may represent promising treatment strategies.


Asunto(s)
Porocarcinoma Ecrino , Neoplasias de las Glándulas Sudoríparas , Humanos , Mutación , Proteína p53 Supresora de Tumor/genética , Secuenciación del Exoma
7.
Nat Commun ; 9(1): 577, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422656

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and usually progresses from a UV-induced precancerous lesion termed actinic keratosis (AK). Despite various efforts to characterize these lesions molecularly, the etiology of AK and its progression to cSCC remain partially understood. Here, we use Infinium MethylationEPIC BeadChips to interrogate the DNA methylation status in healthy, AK and cSCC epidermis samples. Importantly, we show that AK methylation patterns already display classical features of cancer methylomes and are highly similar to cSCC profiles. Further analysis identifies typical features of stem cell methylomes, such as reduced DNA methylation age, non-CpG methylation, and stem cell-related keratin and enhancer methylation patterns. Interestingly, this signature is detected only in half of the samples, while the other half shows patterns more closely related to healthy epidermis. These findings suggest the existence of two subclasses of AK and cSCC emerging from distinct keratinocyte differentiation stages.


Asunto(s)
Carcinoma de Células Escamosas/genética , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Queratosis Actínica/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Diferenciación Celular , Femenino , Humanos , Queratinocitos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
mSphere ; 2(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28989973

RESUMEN

Genetic engineering of cytomegalovirus (CMV) currently relies on generating a bacterial artificial chromosome (BAC) by introducing a bacterial origin of replication into the viral genome using in vivo recombination in virally infected tissue culture cells. However, this process is inefficient, results in adaptive mutations, and involves deletion of viral genes to avoid oversized genomes when inserting the BAC cassette. Moreover, BAC technology does not permit the simultaneous manipulation of multiple genome loci and cannot be used to construct synthetic genomes. To overcome these limitations, we adapted synthetic biology tools to clone CMV genomes in Saccharomyces cerevisiae. Using an early passage of the human CMV isolate Toledo, we first applied transformation-associated recombination (TAR) to clone 16 overlapping fragments covering the entire Toledo genome in Saccharomyces cerevisiae. Then, we assembled these fragments by TAR in a stepwise process until the entire genome was reconstituted in yeast. Since next-generation sequence analysis revealed that the low-passage-number isolate represented a mixture of parental and fibroblast-adapted genomes, we selectively modified individual DNA fragments of fibroblast-adapted Toledo (Toledo-F) and again used TAR assembly to recreate parental Toledo (Toledo-P). Linear, full-length HCMV genomes were transfected into human fibroblasts to recover virus. Unlike Toledo-F, Toledo-P displayed characteristics of primary isolates, including broad cellular tropism in vitro and the ability to establish latency and reactivation in humanized mice. Our novel strategy thus enables de novo cloning of CMV genomes, more-efficient genome-wide engineering, and the generation of viral genomes that are partially or completely derived from synthetic DNA. IMPORTANCE The genomes of large DNA viruses, such as human cytomegalovirus (HCMV), are difficult to manipulate using current genetic tools, and at this time, it is not possible to obtain, molecular clones of CMV without extensive tissue culture. To overcome these limitations, we used synthetic biology tools to capture genomic fragments from viral DNA and assemble full-length genomes in yeast. Using an early passage of the HCMV isolate Toledo containing a mixture of wild-type and tissue culture-adapted virus. we directly cloned the majority sequence and recreated the minority sequence by simultaneous modification of multiple genomic regions. Thus, our novel approach provides a paradigm to not only efficiently engineer HCMV and other large DNA viruses on a genome-wide scale but also facilitates the cloning and genetic manipulation of primary isolates and provides a pathway to generating entirely synthetic genomes.

10.
Oncotarget ; 6(34): 35922-30, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26416425

RESUMEN

Recent reports suggested frequent occurrence of cancer associated somatic mutations within regulatory elements of the genome. Based on initial exome sequencing of 21 melanomas, we report frequent somatic mutations in skin cancers in a bidirectional promoter of diphthamide biosynthesis 3 (DPH3) and oxidoreductase NAD-binding domain containing 1 (OXNAD1) genes. The UV-signature mutations occurred at sites adjacent and within a binding motif for E-twenty six/ternary complex factors (Ets/TCF), at -8 and -9 bp from DPH3 transcription start site. Follow up screening of 586 different skin lesions showed that the DPH3 promoter mutations were present in melanocytic nevi (2/114; 2%), melanoma (30/304; 10%), basal cell carcinoma of skin (BCC; 57/137; 42%) and squamous cell carcinoma of skin (SCC; 12/31; 39%). Reporter assays carried out in one melanoma cell line for DPH3 and OXNAD1 orientations showed statistically significant increased promoter activity due to -8/-9CC > TT tandem mutations; although, no effect of the mutations on DPH3 and OXNAD1 transcription in tumors was observed. The results from this study show occurrence of frequent somatic non-coding mutations adjacent to a pre-existing binding site for Ets transcription factors within the directional promoter of DPH3 and OXNAD1 genes in three major skin cancers. The detected mutations displayed typical UV signature; however, the functionality of the mutations remains to be determined.


Asunto(s)
Carcinoma de Células Escamosas/genética , Proteínas Portadoras/genética , Neoplasias Cutáneas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Carcinoma de Células Escamosas/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Melanoma/genética , Melanoma/patología , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Neoplasias Cutáneas/patología
11.
Sci Transl Med ; 5(185): 185ra68, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23677594

RESUMEN

During the 2009 H1N1 influenza pandemic, vaccines for the virus became available in large quantities only after human infections peaked. To accelerate vaccine availability for future pandemics, we developed a synthetic approach that very rapidly generated vaccine viruses from sequence data. Beginning with hemagglutinin (HA) and neuraminidase (NA) gene sequences, we combined an enzymatic, cell-free gene assembly technique with enzymatic error correction to allow rapid, accurate gene synthesis. We then used these synthetic HA and NA genes to transfect Madin-Darby canine kidney (MDCK) cells that were qualified for vaccine manufacture with viral RNA expression constructs encoding HA and NA and plasmid DNAs encoding viral backbone genes. Viruses for use in vaccines were rescued from these MDCK cells. We performed this rescue with improved vaccine virus backbones, increasing the yield of the essential vaccine antigen, HA. Generation of synthetic vaccine seeds, together with more efficient vaccine release assays, would accelerate responses to influenza pandemics through a system of instantaneous electronic data exchange followed by real-time, geographically dispersed vaccine production.


Asunto(s)
Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Pandemias/prevención & control , Vacunas Sintéticas/inmunología , Animales , Línea Celular , Simulación por Computador , Perros , Genes Sintéticos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Neuraminidasa/genética , Virus Reordenados/inmunología , Reproducibilidad de los Resultados , Carga Viral
12.
Science ; 329(5987): 52-6, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20488990

RESUMEN

We report the design, synthesis, and assembly of the 1.08-mega-base pair Mycoplasma mycoides JCVI-syn1.0 genome starting from digitized genome sequence information and its transplantation into a M. capricolum recipient cell to create new M. mycoides cells that are controlled only by the synthetic chromosome. The only DNA in the cells is the designed synthetic DNA sequence, including "watermark" sequences and other designed gene deletions and polymorphisms, and mutations acquired during the building process. The new cells have expected phenotypic properties and are capable of continuous self-replication.


Asunto(s)
Bioingeniería , Ingeniería Genética , Genoma Bacteriano , Mycoplasma capricolum/genética , Mycoplasma mycoides/genética , Proteínas Bacterianas/análisis , Secuencia de Bases , Clonación Molecular , ADN Bacteriano/síntesis química , ADN Bacteriano/genética , Escherichia coli/genética , Eliminación de Gen , Genes Bacterianos , Datos de Secuencia Molecular , Mycoplasma mycoides/crecimiento & desarrollo , Mycoplasma mycoides/fisiología , Mycoplasma mycoides/ultraestructura , Fenotipo , Plásmidos , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Saccharomyces cerevisiae/genética , Transformación Bacteriana
13.
Science ; 325(5948): 1693-6, 2009 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-19696314

RESUMEN

We recently reported the chemical synthesis, assembly, and cloning of a bacterial genome in yeast. To produce a synthetic cell, the genome must be transferred from yeast to a receptive cytoplasm. Here we describe methods to accomplish this. We cloned a Mycoplasma mycoides genome as a yeast centromeric plasmid and then transplanted it into Mycoplasma capricolum to produce a viable M. mycoides cell. While in yeast, the genome was altered by using yeast genetic systems and then transplanted to produce a new strain of M. mycoides. These methods allow the construction of strains that could not be produced with genetic tools available for this bacterium.


Asunto(s)
Clonación Molecular , Técnicas de Transferencia de Gen , Ingeniería Genética , Genoma Bacteriano , Mycoplasma capricolum/genética , Mycoplasma mycoides/genética , Saccharomyces cerevisiae/genética , Centrómero , Metilación de ADN , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/genética , Mycoplasma mycoides/crecimiento & desarrollo , Mycoplasma mycoides/aislamiento & purificación , Plásmidos , Análisis de Secuencia de ADN , Eliminación de Secuencia , Transformación Bacteriana
14.
Science ; 319(5867): 1215-20, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18218864

RESUMEN

We have synthesized a 582,970-base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb ("1/8 genome"), and 144 kb ("1/4 genome"), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.


Asunto(s)
Clonación Molecular , ADN Bacteriano/síntesis química , Genoma Bacteriano , Genómica/métodos , Mycoplasma genitalium/genética , Secuencia de Bases , Cromosomas Artificiales Bacterianos , Cromosomas Artificiales de Levadura , ADN Recombinante , Escherichia coli/genética , Vectores Genéticos , Oligodesoxirribonucleótidos/síntesis química , Plásmidos , Recombinación Genética , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA