Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37220746

RESUMEN

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Asunto(s)
Antifúngicos , Candidiasis , Animales , Ratones , Complemento C5/metabolismo , Fagocitos/metabolismo
2.
Immunity ; 47(1): 148-158.e5, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28709803

RESUMEN

Mucosal sites such as the intestine, oral cavity, nasopharynx, and vagina all have associated commensal flora. The surface of the eye is also a mucosal site, but proof of a living, resident ocular microbiome remains elusive. Here, we used a mouse model of ocular surface disease to reveal that commensals were present in the ocular mucosa and had functional immunological consequences. We isolated one such candidate commensal, Corynebacterium mastitidis, and showed that this organism elicited a commensal-specific interleukin-17 response from γδ T cells in the ocular mucosa that was central to local immunity. The commensal-specific response drove neutrophil recruitment and the release of antimicrobials into the tears and protected the eye from pathogenic Candida albicans or Pseudomonas aeruginosa infection. Our findings provide direct evidence that a resident commensal microbiome exists on the ocular surface and identify the cellular mechanisms underlying its effects on ocular immune homeostasis and host defense.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Córnea/inmunología , Infecciones por Corynebacterium/inmunología , Corynebacterium/inmunología , Infecciones del Ojo/inmunología , Inmunidad Mucosa , Interleucina-17/metabolismo , Microbiota/inmunología , Neutrófilos/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Linfocitos T/inmunología , Lágrimas/inmunología , Animales , Candidiasis/microbiología , Córnea/microbiología , Infecciones por Corynebacterium/microbiología , Modelos Animales de Enfermedad , Infecciones del Ojo/microbiología , Interacciones Huésped-Patógeno , Humanos , Interleucina-17/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/microbiología , Infecciones por Pseudomonas/microbiología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999932

RESUMEN

The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.


Asunto(s)
Tejido Adiposo , Pulmón , Mycobacterium tuberculosis , Animales , Femenino , Masculino , Ratones , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Pulmón/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología , Tuberculosis Pulmonar/microbiología , Ratones Transgénicos , Factores Sexuales , Modelos Animales de Enfermedad , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Caracteres Sexuales , Ratones Endogámicos C57BL
4.
Antimicrob Agents Chemother ; 66(7): e0030822, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35699443

RESUMEN

Candida albicans causes debilitating, often azole-resistant, infections in patients with chronic mucocutaneous candidiasis (CMC). Amphotericin B (AMB) resistance is rare, but AMB use is limited by parenteral administration and nephrotoxicity. In this study, we evaluated cochleated AMB (CAMB), a new oral AMB formulation, in mouse models of oropharyngeal candidiasis (OPC) and vulvovaginal candidiasis (VVC) and in patients with azole-resistant CMC. OPC and VVC were modeled in Act1-/- mice, and mucosal tissue fungal burden was assessed after once-daily treatment with CAMB, vehicle, or AMB-deoxycholate (AMB-d). Four patients with azole-resistant CMC enrolled in a phase 2 CAMB dose-escalation study. The primary endpoint was clinical improvement at 2 weeks followed by optional extension for long-term CMC suppression to assess safety and efficacy. CAMB-treated mice had significantly reduced tongue and vaginal fungal burdens compared to vehicle-treated mice and exhibited comparable fungal burden reduction relative to AMB-d-treated mice. All CAMB-treated patients reached clinical efficacy by 2 weeks, three at 400 mg twice daily and one at 200 mg twice-daily dosing. All patients continued to the extension phase, with three having sustained clinical improvement of OPC and esophageal candidiasis (EC) for up to 60 months. One patient had a relapse of esophageal symptoms at week 24 and was withdrawn from further study. Clinical responses were not seen for onychomycosis or VVC. CAMB was safe and well-tolerated, without any evidence of nephrotoxicity. In summary, oral CAMB reduced tongue and vaginal fungal burdens during murine candidiasis. A proof-of-concept clinical trial in human CMC showed efficacy with good tolerability and safety. This study has been registered at ClinicalTrials.gov under identifier NCT02629419.


Asunto(s)
Anfotericina B , Candidiasis Mucocutánea Crónica , Candidiasis , Anfotericina B/efectos adversos , Animales , Antifúngicos/efectos adversos , Azoles , Candida albicans , Candidiasis/tratamiento farmacológico , Candidiasis Mucocutánea Crónica/tratamiento farmacológico , Candidiasis Bucal/tratamiento farmacológico , Candidiasis Vulvovaginal/tratamiento farmacológico , Femenino , Humanos , Ratones
5.
J Antimicrob Chemother ; 73(1): 151-155, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040636

RESUMEN

BACKGROUND: Candida albicans, the most common human fungal pathogen, causes chronic mucosal infections in patients with inborn errors of IL-17 immunity that rely heavily on chronic, often lifelong, azole antifungal agents for treatment. However, a rise in azole resistance has predicated a need for developing new antifungal drugs. OBJECTIVES: To test the in vitro and in vivo efficacy of VT-1161 and VT-1129 in the treatment of oropharyngeal candidiasis with azole-susceptible or -resistant C. albicans strains. METHODS: MICs of VT-1161, VT-1129 and nine licensed antifungal drugs were determined for 31 Candida clinical isolates. The drug concentrations in mouse serum and tongues were measured following oral administration. IL-17-signalling-deficient Act1-/- mice were infected with fluconazole-susceptible or fluconazole-resistant C. albicans strains, and the amount of mucosal fungal burden was determined after fluconazole or VT-1161 treatment. RESULTS: Fourteen isolates (45%) were not fluconazole susceptible (MIC ≥4 mg/L). VT-1161 and VT-1129 showed significant in vitro activity against the majority of the 31 mucosal clinical isolates (MIC50 0.03 and 0.06 mg/L, respectively), including Candida glabrata (MIC50, 0.125 and 0.25 mg/L, respectively). After oral doses, VT-1161 and VT-1129 concentrations in mouse serum and tongues were well above their MIC50 values. VT-1161 was highly effective as treatment of both fluconazole-susceptible and -resistant oropharyngeal candidiasis in Act1-/- mice. CONCLUSIONS: VT-1129 and VT-1161 exhibit significant in vitro activity against Candida strains, including fluconazole-resistant C. albicans and C. glabrata. VT-1161 administration in mice results in significant mucosal drug accumulation and eradicates infection caused by fluconazole-susceptible and -resistant Candida strains.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Candidiasis Bucal/tratamiento farmacológico , Candidiasis Bucal/prevención & control , Piridinas/farmacología , Tetrazoles/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Candida albicans/aislamiento & purificación , Candida glabrata/aislamiento & purificación , Candidiasis Bucal/microbiología , Farmacorresistencia Fúngica , Fluconazol/farmacología , Humanos , Ratones , Ratones Noqueados , Pruebas de Sensibilidad Microbiana
6.
J Antimicrob Chemother ; 73(8): 2089-2094, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29788070

RESUMEN

Background: Chronic mucocutaneous candidiasis (CMC) treatment often induces drug resistance, posing long-term challenges. A novel broad-spectrum fungal CYP51 inhibitor, VT-1598, specifically targets fungal CYP51, but not human CYP enzymes. Objectives: To determine the efficacy of VT-1598 in the treatment of oral Candida infection caused by fluconazole-susceptible and -resistant clinical isolates. Methods: The MICs of VT-1598 and fluconazole for 28 Candida isolates recovered from patients with inherited CMC were determined using CLSI M27-A3 and M27-S4 guidelines. Plasma and tongue VT-1598 or fluconazole concentrations were measured in mice following oral administration to determine tissue distribution. Tongue fungal load was determined in IL-17 signalling-deficient Act1-/- mice following sublingual Candida albicans infection and oral treatment with fluconazole or VT-1598. Results: Among the 28 Candida isolates, 10 (36%) had fluconazole MICs of ≥4 mg/L, whereas VT-1598 demonstrated potent in vitro activity against all isolates (MIC90, 0.125 mg/L). After oral administration, VT-1598 levels in mouse plasma and tongue were significantly greater than those of fluconazole. In vivo, VT-1598 exhibited significant efficacy against fluconazole-susceptible and -resistant C. albicans, even at low drug doses. Furthermore, after a 10 day washout period, tongue fungal burdens in fluconazole-treated mice returned to vehicle control levels, whereas, in contrast, they were undetectable in mice treated with VT-1598. Conclusions: VT-1598 effectively controls in vitro growth of mucosally derived Candida clinical isolates, including fluconazole-resistant strains. In vivo, VT-1598 eliminates C. albicans, even after a long washout period or at low doses. Therefore, VT-1598 is a promising drug candidate that may significantly improve treatment options for CMC patients.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Candidiasis Bucal/tratamiento farmacológico , Fluconazol/farmacología , Piridinas/farmacología , Tetrazoles/farmacología , Administración Oral , Animales , Farmacorresistencia Fúngica , Humanos , Interleucina-17/genética , Ratones , Ratones Noqueados , Pruebas de Sensibilidad Microbiana , Lengua/microbiología
7.
PLoS Pathog ; 8(2): e1002525, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22359502

RESUMEN

Cell-substrate adherence is a fundamental property of microorganisms that enables them to exist in biofilms. Our study focuses on adherence of the fungal pathogen Candida albicans to one substrate, silicone, that is relevant to device-associated infection. We conducted a mutant screen with a quantitative flow-cell assay to identify thirty transcription factors that are required for adherence. We then combined nanoString gene expression profiling with functional analysis to elucidate relationships among these transcription factors, with two major goals: to extend our understanding of transcription factors previously known to govern adherence or biofilm formation, and to gain insight into the many transcription factors we identified that were relatively uncharacterized, particularly in the context of adherence or cell surface biogenesis. With regard to the first goal, we have discovered a role for biofilm regulator Bcr1 in adherence, and found that biofilm regulator Ace2 is a major functional target of chromatin remodeling factor Snf5. In addition, Bcr1 and Ace2 share several target genes, pointing to a new connection between them. With regard to the second goal, our findings reveal existence of a large regulatory network that connects eleven adherence regulators, the zinc-response regulator Zap1, and approximately one quarter of the predicted cell surface protein genes in this organism. This limited yet sensitive glimpse of mutant gene expression changes had thus defined one of the broadest cell surface regulatory networks in C. albicans.


Asunto(s)
Candida albicans/fisiología , Adhesión Celular/genética , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Biopelículas/crecimiento & desarrollo , Genes Fúngicos
9.
STAR Protoc ; 5(1): 102781, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113143

RESUMEN

Myeloid phagocytes are essential for antifungal host defense during systemic candidiasis. Here, we present a protocol for assessing phagocyte-fungal interactions in vivo in the kidney, the primary target organ of the murine systemic candidiasis model. We describe steps for intravital confocal microscopy and flow cytometry. We also detail a kidney tissue dissociation procedure to obtain highly pure functional phagocytes for utilization in downstream ex vivo fungal uptake and killing assays.


Asunto(s)
Candidiasis , Riñón , Fagocitos , Ratones , Animales , Citometría de Flujo , Fagocitos/microbiología , Riñón/diagnóstico por imagen , Microscopía Confocal
10.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562863

RESUMEN

Candida auris , a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase (MAPK) is essential for efficient skin colonization, intradermal persistence, as well as systemic virulence. RNA-seq analysis of wildtype parental and hog1 Δ mutant strains revealed marked down-regulation of genes involved in processes such as cell adhesion, cell-wall rearrangement, and pathogenesis in hog1 Δ mutant compared to the wildtype parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell-wall architecture, as the hog1 Δ mutant demonstrated a significant increase in cell-surface ß-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo . Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. Importance: Candida auris is a World Health Organization (WHO) fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention (CDC). C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris . Therefore, understanding C. auris skin colonization mechanisms are critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.

11.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260364

RESUMEN

Aspergillus fumigatus causes life-threatening mold pneumonia in immune compromised patients, particularly in those with quantitative or qualitative defects in neutrophils. While innate immune cell crosstalk licenses neutrophil antifungal activity in the lung, the role of epithelial cells in this process is unknown. Here, we find that that surfactant protein C (SPC)-expressing lung epithelial cells integrate infection-induced IL-1 and type III interferon signaling to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) preferentially at local sites of fungal infection and neutrophil influx. Using in vivo models that distinguish the role of GM-CSF during acute infection from its homeostatic function in alveolar macrophage survival and surfactant catabolism, we demonstrate that epithelial-derived GM-CSF increases the accumulation and fungicidal activity of GM-CSF-responsive neutrophils, with the latter being essential for host survival. Our findings establish SPC + epithelial cells as a central player in regulating the quality and strength of neutrophil-dependent immunity against inhaled mold pathogens. HIGHLIGHTS: GM-CSF is essential for host defense against A. fumigatus in the lung IL-1 and IFN-λ promote GM-CSF production by lung epithelial cells in parallelEpithelial cell-derived GM-CSF increases neutrophil accumulation and fungal killing capacityEpithelial cells preferentially upregulate GM-CSF in local sites of inflammation.

12.
J Clin Invest ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696257

RESUMEN

We describe a previously-unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B-cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, BTKi-treated patients, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in susceptible patients.

13.
Eukaryot Cell ; 11(10): 1201-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22865500

RESUMEN

The Rim101/PacC pathway governs adaptation to alkaline pH in many fungi. Output of the pathway is mediated by transcription factors of the Rim101/PacC family, which are activated by proteolytic cleavage. The proteolytic complex includes scaffold protein Rim20 and endosome-associated subunits of the endosomal sorting complex required for transport (ESCRT). We provide here evidence that Saccharomyces cerevisiae Rim13, the protease that is implicated in Rim101 cleavage, is associated with the Rim20-ESCRT complex, and we investigate its regulation. Rim13-GFP is dispersed in cells grown in acidic medium but forms punctate foci when cells encounter alkaline conditions. A vps4Δ mutant, which accumulates elevated levels of endosomal ESCRT, also accumulates elevated levels of Rim13-GFP foci, independently of external pH. In the vps4Δ background, mutation of ESCRT subunit Snf7 or of Rim20 blocks the formation of Rim13 foci, and we found that Rim13 and Rim20 are colocalized. The Rim13 ortholog PalB of Aspergillus nidulans has been shown to undergo ESCRT and membrane association through an N-terminal MIT domain, but Rim13 orthologs in the Saccharomyces clade lack homology to this N-terminal region. Instead, there is a clade-limited C-terminal region, and we show that point mutations in this region prevent punctate localization and impair Rim13 function. We suggest that RIM13 arose from its ancestral gene through two genome rearrangements. The ancestor lost the coding region for its MIT domain through a 5' rearrangement and acquired the coding region for the Saccharomyces-specific functional equivalent through a 3' rearrangement.


Asunto(s)
Proteasas de Cisteína/química , Péptido Hidrolasas/química , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Datos de Secuencia Molecular , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Transporte de Proteínas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Sci Immunol ; 8(80): eadd4132, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36827419

RESUMEN

Plasmacytoid dendritic cells (pDCs) have been shown to play an important role during immune responses, ranging from initial viral control through the production of type I interferons to antigen presentation. However, recent studies uncovered unexpected heterogeneity among pDCs. We identified a previously uncharacterized immune subset, referred to as pDC-like cells, that not only resembles pDCs but also shares conventional DC (cDC) features. We show that this subset is a circulating precursor distinct from common DC progenitors, with prominent cDC2 potential. Our findings from human CD2-iCre and CD300c-iCre lineage tracing mouse models suggest that a substantial fraction of cDC2s originates from pDC-like cells, which can therefore be referred to as pre-DC2. This precursor subset responds to homeostatic cytokines, such as macrophage colony stimulating factor, by expanding and differentiating into cDC2 that efficiently prime T helper 17 (TH17) cells. Development of pre-DC2 into CX3CR1+ ESAM- cDC2b but not CX3CR1- ESAM+ cDC2a requires the transcription factor KLF4. Last, we show that, under homeostatic conditions, this developmental pathway regulates the immune threshold at barrier sites by controlling the pool of TH17 cells within skin-draining lymph nodes.


Asunto(s)
Linfocitos T CD4-Positivos , Regulación de la Expresión Génica , Ratones , Animales , Humanos , Linfocitos T CD4-Positivos/metabolismo , Presentación de Antígeno , Células Th17/metabolismo , Células Cultivadas , Células Dendríticas , Antígenos de Superficie , Glicoproteínas de Membrana
15.
bioRxiv ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37398397

RESUMEN

Small colony variants (SCVs) are relatively common among some bacterial species and are associated with poor prognosis and recalcitrant infections. Similarly, Candida glabrata - a major intracellular fungal pathogen - produces small and slow-growing respiratory-deficient colonies, termed "petite." Despite reports of clinical petite C . glabrata strains, our understanding of petite behavior in the host remains obscure. Moreover, controversies exist regarding in-host petite fitness and its clinical relevance. Herein, we employed whole-genome sequencing (WGS), dual-RNAseq, and extensive ex vivo and in vivo studies to fill this knowledge gap. WGS identified multiple petite-specific mutations in nuclear and mitochondrially-encoded genes. Consistent with dual-RNAseq data, petite C . glabrata cells did not replicate inside host macrophages and were outcompeted by their non-petite parents in macrophages and in gut colonization and systemic infection mouse models. The intracellular petites showed hallmarks of drug tolerance and were relatively insensitive to the fungicidal activity of echinocandin drugs. Petite-infected macrophages exhibited a pro-inflammatory and type I IFN-skewed transcriptional program. Interrogation of international C . glabrata blood isolates ( n =1000) showed that petite prevalence varies by country, albeit at an overall low prevalence (0-3.5%). Collectively, our study sheds new light on the genetic basis, drug susceptibility, clinical prevalence, and host-pathogen responses of a clinically overlooked phenotype in a major fungal pathogen. Importance: Candida glabrata is a major fungal pathogen, which is able to lose mitochondria and form small and slow-growing colonies, called "petite". This attenuated growth rate has created controversies and questioned the clinical importance of petiteness. Herein, we have employed multiple omicstechnologies and in vivo mouse models to critically assess the clinical importance of petite phenotype. Our WGS identifies multiple genes potentially underpinning petite phenotype. Interestingly, petite C. glabrata cells engulfed by macrophages are dormant and therefore are not killed by the frontline antifungal drugs. Interestingly, macrophages infected with petite cells mount distinct transcriptomic responses. Consistent with our ex-vivo observations, mitochondrial-proficient parental strains outcompete petites during systemic and gut colonization. Retrospective examination of C. glabrata isolates identified petite prevalence a rare entity, can significantly vary from country to country. Collectively, our study overcomes the existing controversies and provides novel insights regarding the clinical relevance of petite C. glabrata isolates.

16.
mBio ; 14(5): e0118023, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37772846

RESUMEN

IMPORTANCE: Candida glabrata is a major fungal pathogen, which is able to lose mitochondria and form small and slow-growing colonies, called "petite." This attenuated growth rate has created controversies and questioned the clinical importance of petiteness. Herein, we have employed multiple omics technologies and in vivo mouse models to critically assess the clinical importance of petite phenotype. Our WGS identifies multiple genes potentially underpinning petite phenotype. Interestingly, petite C. glabrata cells engulfed by macrophages are dormant and, therefore, are not killed by the frontline antifungal drugs. Interestingly, macrophages infected with petite cells mount distinct transcriptomic responses. Consistent with our ex vivo observations, mitochondrial-proficient parental strains outcompete petites during systemic and gut colonization. Retrospective examination of C. glabrata isolates identified petite prevalence a rare entity, which can significantly vary from country to country. Collectively, our study overcomes the existing controversies and provides novel insights regarding the clinical relevance of petite C. glabrata isolates.


Asunto(s)
Candida glabrata , Equinocandinas , Animales , Ratones , Equinocandinas/farmacología , Candida glabrata/genética , Estudios Retrospectivos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Farmacorresistencia Fúngica/genética
17.
Cell Rep ; 42(2): 112046, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36708514

RESUMEN

The diversity of mononuclear phagocyte (MNP) subpopulations across tissues is one of the key physiological characteristics of the immune system. Here, we focus on understanding the metabolic variability of MNPs through metabolic network analysis applied to three large-scale transcriptional datasets: we introduce (1) an ImmGen MNP open-source dataset of 337 samples across 26 tissues; (2) a myeloid subset of ImmGen Phase I dataset (202 MNP samples); and (3) a myeloid mouse single-cell RNA sequencing (scRNA-seq) dataset (51,364 cells) assembled based on Tabula Muris Senis. To analyze such large-scale datasets, we develop a network-based computational approach, genes and metabolites (GAM) clustering, for unbiased identification of the key metabolic subnetworks based on transcriptional profiles. We define 9 metabolic subnetworks that encapsulate the metabolic differences within MNP from 38 different tissues. Obtained modules reveal that cholesterol synthesis appears particularly active within the migratory dendritic cells, while glutathione synthesis is essential for cysteinyl leukotriene production by peritoneal and lung macrophages.


Asunto(s)
Fagocitos , Análisis de la Célula Individual , Animales , Ratones
18.
Cell Host Microbe ; 30(7): 1020-1033.e6, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35568028

RESUMEN

Antibiotics are a modifiable iatrogenic risk factor for the most common human nosocomial fungal infection, invasive candidiasis, yet the underlying mechanisms remain elusive. We found that antibiotics enhanced the susceptibility to murine invasive candidiasis due to impaired lymphocyte-dependent IL-17A- and GM-CSF-mediated antifungal immunity within the gut. This led to non-inflammatory bacterial escape and systemic bacterial co-infection, which could be ameliorated by IL-17A or GM-CSF immunotherapy. Vancomycin alone similarly enhanced the susceptibility to invasive fungal infection and systemic bacterial co-infection. Mechanistically, vancomycin reduced the frequency of gut Th17 cells associated with impaired proliferation and RORγt expression. Vancomycin's effects on Th17 cells were indirect, manifesting only in vivo in the presence of dysbiosis. In humans, antibiotics were associated with an increased risk of invasive candidiasis and death after invasive candidiasis. Our work highlights the importance of antibiotic stewardship in protecting vulnerable patients from life-threatening infections and provides mechanistic insights into a controllable iatrogenic risk factor for invasive candidiasis.


Asunto(s)
Antibacterianos , Candidiasis Invasiva , Coinfección , Animales , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Bacterias/efectos de los fármacos , Bacterias/inmunología , Candida albicans/inmunología , Candidiasis Invasiva/inmunología , Candidiasis Invasiva/microbiología , Coinfección/inmunología , Coinfección/microbiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humanos , Enfermedad Iatrogénica , Inmunoterapia , Interleucina-17/inmunología , Interleucina-17/uso terapéutico , Ratones , Células Th17/metabolismo , Vancomicina/farmacología
19.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377664

RESUMEN

Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, ß-glucan-binding receptor, Dectin-1. The patient's PBMCs failed to produce TNF-α and IL-1ß in response to ß-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1ß and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1ß-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi.


Asunto(s)
Feohifomicosis , beta-Glucanos , Animales , Humanos , Masculino , Ratones , Proteínas Adaptadoras de Señalización CARD/genética , Lectinas Tipo C/genética , Macrófagos/metabolismo , Feohifomicosis/microbiología , Factor de Necrosis Tumoral alfa/genética
20.
JCI Insight ; 7(22)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36166305

RESUMEN

Disseminated coccidioidomycosis (DCM) is caused by Coccidioides, pathogenic fungi endemic to the southwestern United States and Mexico. Illness occurs in approximately 30% of those infected, less than 1% of whom develop disseminated disease. To address why some individuals allow dissemination, we enrolled patients with DCM and performed whole-exome sequencing. In an exploratory set of 67 patients with DCM, 2 had haploinsufficient STAT3 mutations, and defects in ß-glucan sensing and response were seen in 34 of 67 cases. Damaging CLEC7A and PLCG2 variants were associated with impaired production of ß-glucan-stimulated TNF-α from PBMCs compared with healthy controls. Using ancestry-matched controls, damaging CLEC7A and PLCG2 variants were overrepresented in DCM, including CLEC7A Y238* and PLCG2 R268W. A validation cohort of 111 patients with DCM confirmed the PLCG2 R268W, CLEC7A I223S, and CLEC7A Y238* variants. Stimulation with a DECTIN-1 agonist induced DUOX1/DUOXA1-derived hydrogen peroxide [H2O2] in transfected cells. Heterozygous DUOX1 or DUOXA1 variants that impaired H2O2 production were overrepresented in discovery and validation cohorts. Patients with DCM have impaired ß-glucan sensing or response affecting TNF-α and H2O2 production. Impaired Coccidioides recognition and decreased cellular response are associated with disseminated coccidioidomycosis.


Asunto(s)
Coccidioidomicosis , beta-Glucanos , Humanos , Factor de Necrosis Tumoral alfa/genética , Peróxido de Hidrógeno , Coccidioidomicosis/genética , Coccidioidomicosis/epidemiología , Coccidioidomicosis/microbiología , Coccidioides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA