RESUMEN
BACKGROUND: Sequencing Mendelian arrhythmia genes in individuals without an indication for arrhythmia genetic testing can identify carriers of pathogenic or likely pathogenic (P/LP) variants. However, the extent to which these variants are associated with clinically meaningful phenotypes before or after return of variant results is unclear. In addition, the majority of discovered variants are currently classified as variants of uncertain significance, limiting clinical actionability. METHODS: The eMERGE-III study (Electronic Medical Records and Genomics Phase III) is a multicenter prospective cohort that included 21 846 participants without previous indication for cardiac genetic testing. Participants were sequenced for 109 Mendelian disease genes, including 10 linked to arrhythmia syndromes. Variant carriers were assessed with electronic health record-derived phenotypes and follow-up clinical examination. Selected variants of uncertain significance (n=50) were characterized in vitro with automated electrophysiology experiments in HEK293 cells. RESULTS: As previously reported, 3.0% of participants had P/LP variants in the 109 genes. Herein, we report 120 participants (0.6%) with P/LP arrhythmia variants. Compared with noncarriers, arrhythmia P/LP carriers had a significantly higher burden of arrhythmia phenotypes in their electronic health records. Fifty-four participants had variant results returned. Nineteen of these 54 participants had inherited arrhythmia syndrome diagnoses (primarily long-QT syndrome), and 12 of these 19 diagnoses were made only after variant results were returned (0.05%). After in vitro functional evaluation of 50 variants of uncertain significance, we reclassified 11 variants: 3 to likely benign and 8 to P/LP. CONCLUSIONS: Genome sequencing in a large population without indication for arrhythmia genetic testing identified phenotype-positive carriers of variants in congenital arrhythmia syndrome disease genes. As the genomes of large numbers of people are sequenced, the disease risk from rare variants in arrhythmia genes can be assessed by integrating genomic screening, electronic health record phenotypes, and in vitro functional studies. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier; NCT03394859.
Asunto(s)
Arritmias Cardíacas , Pruebas Genéticas , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Genómica , Células HEK293 , Humanos , Fenotipo , Estudios ProspectivosRESUMEN
Hundreds of genetic variants in KCNQ2 encoding the voltage-gated potassium channel KV7.2 are associated with early onset epilepsy and/or developmental disability, but the functional consequences of most variants are unknown. Absent functional annotation for KCNQ2 variants hinders identification of individuals who may benefit from emerging precision therapies. We employed automated patch clamp recordings to assess at, to our knowledge, an unprecedented scale the functional and pharmacological properties of 79 missense and 2 inframe deletion KCNQ2 variants. Among the variants we studied were 18 known pathogenic variants, 24 mostly rare population variants, and 39 disease-associated variants with unclear functional effects. We analyzed electrophysiological data recorded from 9,480 cells. The functional properties of 18 known pathogenic variants largely matched previously published results and validated automated patch clamp for this purpose. Unlike rare population variants, most disease-associated KCNQ2 variants exhibited prominent loss-of-function with dominant-negative effects, providing strong evidence in support of pathogenicity. All variants responded to retigabine, although there were substantial differences in maximal responses. Our study demonstrated that dominant-negative loss-of-function is a common mechanism associated with missense KCNQ2 variants. Importantly, we observed genotype-dependent differences in the response of KCNQ2 variants to retigabine, a proposed precision therapy for KCNQ2 developmental and epileptic encephalopathy.
Asunto(s)
Epilepsia , Canales de Potasio con Entrada de Voltaje , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Humanos , Canal de Potasio KCNQ2/genética , Mutación MissenseRESUMEN
Patch clamp recording enabled a revolution in cellular electrophysiology, and is useful for evaluating the functional consequences of ion channel gene mutations or variants associated with human disorders called channelopathies. However, due to massive growth of genetic testing in medical practice and research, the number of known ion channel variants has exploded into the thousands. Fortunately, automated methods for performing patch clamp recording have emerged as important tools to address the explosion in ion channel variants. In this chapter, we present our approach to harnessing automated electrophysiology to study a human voltage-gated potassium channel gene (KCNQ1), which harbors hundreds of mutations associated with genetic disorders of heart rhythm including the congenital long-QT syndrome. We include protocols for performing high efficiency electroporation of heterologous cells with recombinant KCNQ1 plasmid DNA and for automated planar patch recording including data analysis. These methods can be adapted for studying other voltage-gated ion channels.
Asunto(s)
Canal de Potasio KCNQ1 , Canales de Potasio con Entrada de Voltaje , Fenómenos Electrofisiológicos , Electrofisiología , Humanos , Canales IónicosRESUMEN
Mutations in KCNQ2, which encodes a pore-forming K+ channel subunit responsible for neuronal M-current, cause neonatal epileptic encephalopathy, a complex disorder presenting with severe early-onset seizures and impaired neurodevelopment. The condition is exceptionally difficult to treat, partially because the effects of KCNQ2 mutations on the development and function of human neurons are unknown. Here, we used induced pluripotent stem cells (iPSCs) and gene editing to establish a disease model and measured the functional properties of differentiated excitatory neurons. We find that patient iPSC-derived neurons exhibit faster action potential repolarization, larger post-burst afterhyperpolarization and a functional enhancement of Ca2+-activated K+ channels. These properties, which can be recapitulated by chronic inhibition of M-current in control neurons, facilitate a burst-suppression firing pattern that is reminiscent of the interictal electroencephalography pattern in patients. Our findings suggest that dyshomeostatic mechanisms compound KCNQ2 loss-of-function leading to alterations in the neurodevelopmental trajectory of patient iPSC-derived neurons.
Asunto(s)
Encefalopatías/genética , Canal de Potasio KCNQ2/genética , Neuronas/fisiología , Potenciales de Acción/fisiología , Encefalopatías/fisiopatología , Línea Celular , Humanos , Canal de Potasio KCNQ2/metabolismo , Células Madre PluripotentesRESUMEN
The function of the voltage-gated KCNQ1 potassium channel is regulated by co-assembly with KCNE auxiliary subunits. KCNQ1-KCNE1 channels generate the slow delayed rectifier current, IKs, which contributes to the repolarization phase of the cardiac action potential. A three amino acid motif (F57-T58-L59, FTL) in KCNE1 is essential for slow activation of KCNQ1-KCNE1 channels. However, how this motif interacts with KCNQ1 to control its function is unknown. Combining computational modeling with electrophysiological studies, we developed structural models of the KCNQ1-KCNE1 complex that suggest how KCNE1 controls KCNQ1 activation. The FTL motif binds at a cleft between the voltage-sensing and pore domains and appears to affect the channel gate by an allosteric mechanism. Comparison with the KCNQ1-KCNE3 channel structure suggests a common transmembrane-binding mode for different KCNEs and illuminates how specific differences in the interaction of their triplet motifs determine the profound differences in KCNQ1 functional modulation by KCNE1 versus KCNE3.
Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/genética , Potenciales de la Membrana/fisiología , Canales de Potasio con Entrada de Voltaje/genética , Animales , Células CHO , Cricetulus , Humanos , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismoRESUMEN
BACKGROUND: Mutations in genes responsible for the congenital long-QT syndrome, especially SCN5A, have been identified in some cases of sudden infant death syndrome. In a large-scale collaborative genetic screen, several SCN5A variants were identified in a Norwegian sudden infant death syndrome cohort (n=201). We present functional characterization of 7 missense variants (S216L, R680H, T1304M, F1486L, V1951L, F2004L, and P2006A) and 1 in-frame deletion allele (delAL586-587) identified by these efforts. METHODS AND RESULTS: Whole-cell sodium currents were measured in tsA201 cells transiently transfected with recombinant wild-type or mutant SCN5A cDNA (hH1) coexpressed with the human beta1 subunit. All variants exhibited defects in the kinetics and voltage dependence of inactivation. Five variants (S216L, T1304M, F1486L, F2004L, and P2006A) exhibited significantly increased persistent sodium currents (range, 0.5% to 1.7% of peak current) typical of SCN5A mutations associated with long-QT syndrome. These same 5 variants also displayed significant depolarizing shifts in voltage dependence of inactivation (range, 5 to 14 mV) and faster recovery from inactivation, but F1486L uniquely exhibits a depolarizing shift in the conductance-voltage relationship. Three alleles (delAL586-587, R680H, and V1951L) exhibited increased persistent current only under conditions of internal acidosis (R680H) or when expressed in the context of a common splice variant (delQ1077), indicating that they have a latent dysfunctional phenotype. CONCLUSIONS: Our present results greatly expand the spectrum of functionally characterized SCN5A variants associated with sudden infant death syndrome and provide further biophysical correlates of arrhythmia susceptibility in this syndrome.
Asunto(s)
Electrocardiografía , Síndrome de QT Prolongado/complicaciones , Síndrome de QT Prolongado/genética , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Mutación Missense/genética , Canales de Sodio/genética , Canales de Sodio/fisiología , Muerte Súbita del Lactante/etiología , Muerte Súbita del Lactante/genética , Alelos , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Estudios de Cohortes , ADN Complementario/genética , Electrofisiología , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Variación Genética/genética , Humanos , Lactante , Síndrome de QT Prolongado/fisiopatología , Matemática , Canal de Sodio Activado por Voltaje NAV1.5 , Noruega , Fenotipo , Factores de RiesgoRESUMEN
We investigated on the mechanism responsible for the reduced ATP-sensitive K(+)(K(ATP)) channel activity recorded from skeletal muscle of K(+)-depleted rats. Patch-clamp and gene expression measurements of K(ATP) channel subunits were performed. A down-regulation of the K(ATP) channel subunits Kir6.2(-70%) and SUR2A(-46%) in skeletal muscles of K(+)-depleted rats but no changes in the expression of Kir6.1, SUR1 and SUR2B subunits were observed. A reduced K(ATP) channel currents of -69.5% in K(+)-depleted rats was observed. The Kir6.2/SUR2A-B agonist cromakalim showed similar potency in activating the K(ATP) channels of normokalaemic and K(+)-depleted rats but reduced efficacy in K(+)-depleted rats. The Kir6.2/SUR1-2B agonist diazoxide activated K(ATP) channels in normokalaemic and K(+)-depleted rats with equal potency and efficacy. The down-regulation of the Kir6.2 explains the reduced K(ATP) channel activity in K(+)-depleted rats. The lower expression of SUR2A explains the reduced efficacy of cromakalim; preserved SUR1 expression accounts for the efficacy of diazoxide. Kir6.2/SUR2A deficiency is associated with impaired muscle function in K(+)-depleted rats and in hypoPP.
Asunto(s)
Canales KATP/deficiencia , Músculo Esquelético/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Deficiencia de Potasio/metabolismo , Animales , Cromakalim/farmacología , Diazóxido/farmacología , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Parálisis Periódica Hipopotasémica/fisiopatología , Canales KATP/efectos de los fármacos , Canales KATP/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Músculo Esquelético/fisiopatología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética , Deficiencia de Potasio/genética , Deficiencia de Potasio/fisiopatología , Ratas , Ratas Wistar , Sarcolema/efectos de los fármacos , Sarcolema/genética , Sarcolema/metabolismo , Vasodilatadores/farmacologíaRESUMEN
BACKGROUND: The explosive growth in known human gene variation presents enormous challenges to current approaches for variant classification that have implications for diagnosis and treatment of many genetic diseases. For disorders caused by mutations in cardiac ion channels as in congenital arrhythmia syndromes, in vitro electrophysiological evidence has high value in discriminating pathogenic from benign variants, but these data are often lacking because assays are cost, time, and labor intensive. METHODS: We implemented a strategy for performing high-throughput functional evaluations of ion channel variants that repurposed an automated electrophysiological recording platform developed previously for drug discovery. RESULTS: We demonstrated the success of this approach by evaluating 78 variants in KCNQ1, a major gene involved in genetic disorders of cardiac arrhythmia susceptibility. We benchmarked our results with traditional electrophysiological approaches and observed a high level of concordance. This strategy also enabled studies of dominant-negative behavior of variants exhibiting severe loss-of-function. Overall, our results provided functional data useful for reclassifying >65% of the studied KCNQ1 variants. CONCLUSIONS: Our results illustrate an efficient and high-throughput paradigm linking genotype to function for a human cardiac ion channel that will enable data-driven classification of large numbers of variants and create new opportunities for precision medicine.
Asunto(s)
Arritmias Cardíacas , Predisposición Genética a la Enfermedad , Genotipo , Canal de Potasio KCNQ1 , Mutación , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Humanos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismoRESUMEN
Mutations in SCN1A, the gene encoding the brain voltage-gated sodium channel alpha1 subunit (NaV1.1), are associated with at least two forms of epilepsy, generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). We examined the functional properties of four GEFS+ alleles and one SMEI allele using whole-cell patch-clamp analysis of heterologously expressed recombinant human SCN1A. One previously reported GEFS+ mutation (I1656M) and an additional novel allele (R1657C), both affecting residues in a voltage-sensing S4 segment, exhibited a similar depolarizing shift in the voltage dependence of activation. Additionally, R1657C showed a 50% reduction in current density and accelerated recovery from slow inactivation. Unlike three other GEFS+ alleles that we recently characterized, neither R1657C nor I1656M gave rise to a persistent, noninactivating current. In contrast, two other GEFS+ mutations (A1685V and V1353L) and L986F, an SMEI-associated allele, exhibited complete loss of function. In conclusion, our data provide evidence for a wide spectrum of sodium channel dysfunction in familial epilepsy and demonstrate that both GEFS+ and SMEI can be associated with nonfunctional SCN1A alleles.
Asunto(s)
Epilepsia/genética , Epilepsia/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Canales de Sodio/genética , Canales de Sodio/fisiología , Conductividad Eléctrica , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/fisiopatología , Predisposición Genética a la Enfermedad , Humanos , Activación del Canal Iónico , Cinética , Masculino , Mutación , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.1 , Neuronas/fisiología , Técnicas de Placa-Clamp , Convulsiones Febriles/genética , Convulsiones Febriles/fisiopatologíaRESUMEN
Most voltage-gated K(+) currents are relatively insensitive to extracellular Na(+) (Na(+)(o)), but Na(+)(o) potently inhibits outward human ether-a-go-go-related gene (HERG)-encoded K(+) channel current (Numaguchi, H., J.P. Johnson, Jr., C.I. Petersen, and J.R. Balser. 2000. Nat. Neurosci. 3:429-30). We studied wild-type (WT) and mutant HERG currents and used two strategic probes, intracellular Na(+) (Na(+)(i)) and extracellular Ba(2+) (Ba(2+)(o)), to define a site where Na(+)(o) interacts with HERG. Currents were recorded from transfected Chinese hamster ovary (CHO-K1) cells using the whole-cell voltage clamp technique. Inhibition of WT HERG by Na(+)(o) was not strongly dependent on the voltage during activating pulses. Three point mutants in the P-loop region (S624A, S624T, S631A) with intact K(+) selectivity and impaired inactivation each had reduced sensitivity to inhibition by Na(+)(o). Quantitatively similar effects of Na(+)(i) to inhibit HERG current were seen in the WT and S624A channels. As S624A has impaired Na(+)(o) sensitivity, this result suggested that Na(+)(o) and Na(+)(i) act at different sites. Extracellular Ba(2+) (Ba(2+)(o)) blocks K(+) channel pores, and thereby serves as a useful probe of K(+) channel structure. HERG channel inactivation promotes relief of Ba(2+) block (Weerapura, M., S. Nattel, M. Courtemanche, D. Doern, N. Ethier, and T. Hebert. 2000. J. Physiol. 526:265-278). We used this feature of HERG inactivation to distinguish between simple allosteric and pore-occluding models of Na(+)(o) action. A remote allosteric model predicts that Na(+)(o) will speed relief of Ba(2+)(o) block by promoting inactivation. Instead, Na(+)(o) slowed Ba(2+) egress and Ba(2+) relieved Na(+)(o) inhibition, consistent with Na(+)(o) binding to an outer pore site. The apparent affinities of the outer pore for Na(+)(o) and K(+)(o) as measured by slowing of Ba(2+) egress were compatible with competition between the two ions for the channel pore in their physiological concentration ranges. We also examined the role of the HERG closed state in Na(+)(o) inhibition. Na(+)(o) inhibition was inversely related to pulsing frequency in the WT channel, but not in the pore mutant S624A.
Asunto(s)
Proteínas de Transporte de Catión , Activación del Canal Iónico/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Canales de Potasio/fisiología , Sodio/farmacología , Animales , Bario/farmacocinética , Células CHO , Cricetinae , Electrofisiología , Canales de Potasio Éter-A-Go-Go , Canales de Potasio/genética , Sodio/farmacocinéticaRESUMEN
ATP-sensitive K(+) channels (K(ATP)) are an octameric complex of inwardly rectifying K(+) channels (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1 and SUR2A/B), which are involved in several diseases. The tissue-selective expression of the subunits leads to different channels; however, the composition and role of the functional channel in native muscle fibers is not known. In this article, the properties of K(ATP) channels of fast-twitch and slow-twitch muscles were compared by combining patch-clamp experiments with measurements of gene expression. We found that the density of K(ATP) currents/area was muscle-type specific, being higher in fast-twitch muscles compared with the slow-twitch muscle. The density of K(ATP) currents/area was correlated with the level of Kir6.2 expression. SUR2A was the most abundant subunit expressed in all muscles, whereas the vascular SUR2B subunit was expressed but at lower levels. A significant expression of the pancreatic SUR1 was also found in fast-twitch muscles. Pharmacological experiments showed that the channel response to the SUR1 agonist diazoxide, SUR2A/B agonist cromakalim, SUR1 antagonist tolbutamide, and the SUR1/SUR2A/B-antagonist glibenclamide matched the SURs expression pattern. Muscle-specific K(ATP) subunit compositions contribute to the physiological performance of different muscle fiber types and determine the pharmacological actions of drugs modulating K(ATP) activity in muscle diseases.