Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Learn Mem ; 184: 107498, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34332068

RESUMEN

Cognitive flexibility is a prefrontal cortex-dependent neurocognitive process that enables behavioral adaptation in response to changes in environmental contingencies. Electrical vagus nerve stimulation (VNS) enhances several forms of learning and neuroplasticity, but its effects on cognitive flexibility have not been evaluated. In the current study, a within-subjects design was used to assess the effects of VNS on performance in a novel visual discrimination reversal learning task conducted in touchscreen operant chambers. The task design enabled simultaneous assessment of acute VNS both on reversal learning and on recall of a well-learned discrimination problem. Acute VNS delivered in conjunction with stimuli presentation during reversal learning reliably enhanced learning of new reward contingencies. Enhancement was not observed, however, if VNS was delivered during the session but was not coincident with presentation of to-be-learned stimuli. In addition, whereas VNS delivered at 30 HZ enhanced performance, the same enhancement was not observed using 10 or 50 Hz. Together, these data show that acute VNS facilitates reversal learning and indicate that the timing and frequency of the VNS are critical for these enhancing effects. In separate rats, administration of the norepinephrine reuptake inhibitor atomoxetine also enhanced reversal learning in the same task, consistent with a noradrenergic mechanism through which VNS enhances cognitive flexibility.


Asunto(s)
Aprendizaje Inverso , Estimulación del Nervio Vago , Inhibidores de Captación Adrenérgica , Animales , Clorhidrato de Atomoxetina/farmacología , Baclofeno/farmacología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología , Agonistas de Receptores GABA-B/farmacología , Masculino , Ratas , Ratas Endogámicas BN , Aprendizaje Inverso/efectos de los fármacos , Aprendizaje Inverso/fisiología
2.
Brain Struct Funct ; 223(9): 4227-4241, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30196430

RESUMEN

Rho-associated protein kinases (ROCK) 1 and 2 are attractive drug targets for a range of neurologic disorders; however, a critical barrier to ROCK-based therapeutics is ambiguity over whether there are isoform-specific roles for ROCKs in neuronal structural plasticity. Here, we used a genetics approach to address this long-standing question by analyzing both male and female adult ROCK1+/- and ROCK2+/- mice compared to littermate controls. Individual pyramidal neurons in the medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. Increased apical and basal dendritic length and intersections were observed in ROCK1+/- but not ROCK2+/- mice. Although dendritic spine densities were comparable among genotypes, apical spine length was decreased in ROCK1+/- but increased in ROCK2+/- mice. Spine head and neck diameter were reduced similarly in ROCK1+/- and ROCK2+/- mice; however, certain spine morphologic subclasses were more affected than others in a genotype-dependent manner. Biochemical analyses of ROCK substrates in synaptic fractions revealed that phosphorylation of LIM kinase and cofilin were reduced in ROCK1+/- and ROCK2+/- mice, while phosphorylation of myosin light chain was decreased exclusively in ROCK1+/- mice. Collectively, these observations implicate ROCK1 as a novel regulatory factor of neuronal dendritic structure and detail distinct and complementary roles of ROCKs in mPFC dendritic spine structure.


Asunto(s)
Espinas Dendríticas/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Corteza Prefrontal/fisiología , Quinasas Asociadas a rho/fisiología , Animales , Femenino , Imagenología Tridimensional , Masculino , Ratones Transgénicos , Neuronas/citología , Isoformas de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA