RESUMEN
OBJECTIVES: To report a case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection 6 months after the first infection in a young healthy female physician. Both episodes led to mild coronavirus disease 2019 (COVID-19). METHODS: SARS-CoV-2 infections were detected by real-time reverse transcriptase PCR (RT-PCR) on nasopharyngeal specimens. Reinfection was confirmed by whole-genome sequencing. Kinetics of total anti-S receptor binding domain immunoglobulins (Ig anti-S RBD), anti-nucleoprotein (anti-N) and neutralizing antibodies were determined in serial serum samples retrieved during both infection episodes. Memory B-cell responses were assessed at day 12 after reinfection. RESULTS: Whole-genome sequencing identified two different SARS-CoV-2 genomes both belonging to clade 20A, with only one nonsynonymous mutation in the spike protein and clustered with viruses circulating in Geneva (Switzerland) at the time of each of the corresponding episodes. Seroconversion was documented with low levels of total Ig anti-S RBD and anti-N antibodies at 1 month after the first infection, whereas neutralizing antibodies quickly declined after the first episode and then were boosted by the reinfection, with high titres detectable 4 days after symptom onset. A strong memory B-cell response was detected at day 12 after onset of symptoms during reinfection, indicating that the first episode elicited cellular memory responses. CONCLUSIONS: Rapid decline of neutralizing antibodies may put medical personnel at risk of reinfection, as shown in this case. However, reinfection leads to a significant boosting of previous immune responses. Larger cohorts of reinfected subjects with detailed descriptions of their immune responses are needed to define correlates of protection and their duration after infection.
RESUMEN
PURPOSE: To compare bacteria recovered by standard cultures and metataxonomics, particularly with regard to ventilator-associated pneumonia (VAP) pathogens, and to determine if the presence of particular bacteria or microbiota in tracheal and oropharyngeal secretions during the course of intubation was associated with the development of VAP. METHODS: In this case-control study, oropharyngeal secretions and endotracheal aspirate were collected daily in mechanically ventilated patients. Culture and metataxonomics (16S rRNA gene-based taxonomic profiling of bacterial communities) were performed on serial upper respiratory samples from patients with late-onset definite VAP and their respective controls. RESULTS: Metataxonomic analyses showed that a low relative abundance of Bacilli at the time of intubation in the oropharyngeal secretions was strongly associated with the subsequent development of VAP. On the day of VAP, the quantity of human and bacterial DNA in both tracheal and oropharyngeal secretions was significantly higher in patients with VAP than in matched controls with similar ventilation times. Molecular techniques identified the pathogen(s) of VAP found by culture, but also many more bacteria, classically difficult to culture, such as Mycoplasma spp. and anaerobes. CONCLUSIONS: Molecular analyses of respiratory specimens identified markers associated with the development of VAP, as well as important differences in the taxa abundance between VAP and controls. Further prospective trials are needed to test the predictive value of these markers, as well as the relevance of uncultured bacteria in the pathogenesis of VAP.
Asunto(s)
Biomarcadores/análisis , Microbiota , Neumonía Asociada al Ventilador/microbiología , APACHE , Adulto , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Técnicas de Cultivo/instrumentación , Técnicas de Cultivo/métodos , Femenino , Humanos , Unidades de Cuidados Intensivos/organización & administración , Masculino , Persona de Mediana Edad , Orofaringe/microbiología , Neumonía Asociada al Ventilador/mortalidad , Estudios Prospectivos , ARN Ribosómico 16S/análisis , Respiración Artificial/efectos adversos , Suiza , Tráquea/microbiologíaRESUMEN
The spread of microorganisms in hospitals is an important public health threat, and yet few studies have assessed how human microbial communities (microbiota) evolve in the hospital setting. Studies conducted so far have mainly focused on a limited number of bacterial species, mostly pathogenic ones and primarily during outbreaks. We explored the bacterial community diversity of the microbiota from oral and respiratory samples of intubated patients hospitalized in the intensive care unit and we discuss the technical challenges that may arise while using culture-independent approaches to study these types of samples.