Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(14): 141104, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064506

RESUMEN

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.

2.
Water Res ; 189: 116646, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246218

RESUMEN

Microcystinase (MlrA) was first described in 1996. Since then MlrA peptidase activity has proven to be both the most efficient enzymatic process and the most specific catalyst of all known microcystins detoxification pathways. Furthermore, MlrA and the MlrABC degradation pathway are presently the only enzymatic processes with clear genetic and biochemical descriptions available for microcystins degradation, greatly facilitating modern applied genetics for any relevant technological development. Recently, there has been increasing interest in the potential of sustainable, biologically inspired alternatives to current industrial practice, with note that biological microcystins degradation is the primary detoxification process found in nature. While previous reviews have broadly discussed microbial biodegradation processes, here we present a review focused specifically on MlrA. Following a general overview, we briefly highlight the initial discovery and present understanding of the MlrABC degradation pathway, before discussing the genetic and biochemical aspects of MlrA. We then review the potential biotechnology applications of MlrA in the context of available literature with emphasis on the optimization of MlrA for in situ applications including (i) direct modulation of Mlr activity within naturally existing populations, (ii) bioaugmentation of systems with introduced biodegradative capacity via whole cell biocatalysts, and (iii) bioremediation via direct MlrA application.


Asunto(s)
Biotecnología , Microcistinas , Biodegradación Ambiental
3.
Environ Pollut ; 237: 926-935, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29454496

RESUMEN

In this report, we establish proof-of-principle demonstrating for the first time genetic engineering of a photoautotrophic microorganism for bioremediation of naturally occurring cyanotoxins. In model cyanobacterium Synechocystis sp. PCC 6803 we have heterologously expressed Sphingopyxis sp. USTB-05 microcystinase (MlrA) bearing a 23 amino acid N-terminus secretion peptide from native Synechocystis sp. PCC 6803 PilA (sll1694). The resultant whole cell biocatalyst displayed about 3 times higher activity against microcystin-LR compared to a native MlrA host (Sphingomonas sp. ACM 3962), normalized for optical density. In addition, MlrA activity was found to be almost entirely located in the cyanobacterial cytosolic fraction, despite the presence of the secretion tag, with crude cellular extracts showing MlrA activity comparable to extracts from MlrA expressing E. coli. Furthermore, despite approximately 9.4-fold higher initial MlrA activity of a whole cell E. coli biocatalyst, utilization of a photoautotrophic chassis resulted in prolonged stability of MlrA activity when cultured under semi-natural conditions (using lake water), with the heterologous MlrA biocatalytic activity of the E. coli culture disappearing after 4 days, while the cyanobacterial host displayed activity (3% of initial activity) after 9 days. In addition, the cyanobacterial cell density was maintained over the duration of this experiment while the cell density of the E. coli culture rapidly declined. Lastly, failure to establish a stable cyanobacterial isolate expressing native MlrA (without the N-terminus tag) via the strong cpcB560 promoter draws attention to the use of peptide tags to positively modulate expression of potentially toxic proteins.


Asunto(s)
Biodegradación Ambiental , Cianobacterias/genética , Microcistinas/genética , Cianobacterias/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Toxinas Marinas , Microcistinas/metabolismo , Sphingomonas/metabolismo
4.
Evol Appl ; 9(8): 963-81, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27606005

RESUMEN

As global change alters multiple environmental conditions, predicting species' responses can be challenging without understanding how each environmental factor influences organismal performance. Approaches quantifying mechanistic relationships can greatly complement correlative field data, strengthening our abilities to forecast global change impacts. Substantial salinity increases are projected in the San Francisco Estuary, California, due to anthropogenic water diversion and climatic changes, where the critically endangered delta smelt (Hypomesus transpacificus) largely occurs in a low-salinity zone (LSZ), despite their ability to tolerate a much broader salinity range. In this study, we combined molecular and organismal measures to quantify the physiological mechanisms and sublethal responses involved in coping with salinity changes. Delta smelt utilize a suite of conserved molecular mechanisms to rapidly adjust their osmoregulatory physiology in response to salinity changes in estuarine environments. However, these responses can be energetically expensive, and delta smelt body condition was reduced at high salinities. Thus, acclimating to salinities outside the LSZ could impose energetic costs that constrain delta smelt's ability to exploit these habitats. By integrating data across biological levels, we provide key insight into the mechanistic relationships contributing to phenotypic plasticity and distribution limitations and advance the understanding of the molecular osmoregulatory responses in nonmodel estuarine fishes.

5.
Science ; 350(6265): 1242-5, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26785487

RESUMEN

Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA