Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
DNA Repair (Amst) ; 7(6): 912-21, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18436486

RESUMEN

Irradiation of mammalian cells with solar light is associated with the generation of reactive oxygen species (ROS) and oxidative stress, which is mediated in part by endogenous photosensitizers absorbing in the visible range of the solar spectrum. Accordingly, oxidative DNA base modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are the predominant types of DNA damage in cells irradiated at wavelengths >400 nm. We have analysed the repair of oxidative purine modifications in human skin fibroblasts and melanoma cells using an alkaline elution technique, both under normal conditions and after depletion of glutathione. Similar repair rates were observed in fibroblasts and melanoma cells from three different patients (t1/2 approximately 4h). In both cell types, glutathione depletion (increased oxidative stress) caused a pronounced repair retardation even under non-toxic irradiation conditions. Furthermore, the cleavage activity at 8-oxoG residues measured in protein extracts of the cells dropped transiently after irradiation. An addition of dithiothreitol restored normal repair rates. Interestingly, the repair rates of cyclobutane pyrimidine dimers (t1/2 approximately 18 h), AP sites (t1/2 approximately 1h) and single-strand breaks (t1/2 <30 min) were not affected by the light-induced oxidative stress. We conclude that the base excision repair of oxidative purine modifications is surprisingly vulnerable to oxidative stress, while the nucleotide excision repair of pyrimidine dimers is not.


Asunto(s)
Reparación del ADN , Melanoma/metabolismo , Estrés Oxidativo , Piel/metabolismo , Anciano , Femenino , Glutatión/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Luz , Melanoma/genética , Melanoma/patología , Piel/citología , Rayos Ultravioleta
2.
DNA Repair (Amst) ; 1(6): 437-47, 2002 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-12509232

RESUMEN

8-Methyl-2'-deoxyguanosine (8-medGuo) has been shown to be a major stable alkylation product of 2'-deoxyguanosine induced by methyl radical attack on DNA. Moreover, by using primer extension assays, the latter DNA modification has recently been reported to be a miscoding lesion by generating G to C and G to T transversions and deletions in vitro. However, no data have been reported up to now, concerning the processing of this C8-alkylated nucleoside by the DNA repair machinery. Therefore, we have investigated the capability of excision of 8-methylguanine (8-meGua) site specifically incorporated into oligonucleotide substrates by several bacterial, yeast and mammalian DNA N-glycosylases. The results show that the 3-methyladenine (3-meAde) DNA glycosylase II (AlkA protein) from Escherichia coli is the only DNA N-glycosylase tested able to remove 8-meGua from double-stranded DNA fragments. Moreover, the activity of AlkA for 8-meGua varied markedly depending on the opposite base in DNA, being the highest with Adenine and Thymine and the lowest with Cytosine and Guanine. The removal of 8-meGua by AlkA protein was compared to that of 7-methylguanine (7-meGua) and hypoxanthine (Hx). The rank of damage as a substrate for AlkA being 7-meGua>8-meGua>Hx. In contrast, the human 3-meAde DNA N-glycosylase (Mpg) is not able to release 8-meGua paired with any of the four DNA bases. We also show that, DNA N-glycosylases involved in the removal of oxidative damage, such as Fpg or Nth proteins from E. coli, Ntg1, Ntg2 or Ogg1 proteins of Saccharomyces cerevisiae, or human Ogg1 do not release 8-meGua placed opposite any of the four DNA bases. Furthermore, HeLa and Chinese hamster ovary (CHO) cell free protein extracts do not show any cleavage activity at 8-meGua paired with adenine or cytosine, which suggests the absence of base excision repair (BER) of this lesion in mammalian cells.


Asunto(s)
Reparación del ADN/fisiología , ADN/metabolismo , Escherichia coli/enzimología , Guanina/análogos & derivados , Guanina/metabolismo , N-Glicosil Hidrolasas/fisiología , Fosfatasa Alcalina/farmacología , Animales , Disparidad de Par Base , Células CHO , Cromatografía Líquida de Alta Presión , Cricetinae , Citosina/química , Daño del ADN/genética , ADN Glicosilasas , Cartilla de ADN , Exonucleasas/farmacología , Células HeLa , Humanos , Técnicas In Vitro , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/aislamiento & purificación , N-Glicosil Hidrolasas/metabolismo , Oligodesoxirribonucleótidos/síntesis química , Saccharomyces cerevisiae/enzimología , Endonucleasas Específicas del ADN y ARN con un Solo Filamento/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Nat Struct Mol Biol ; 20(4): 461-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23435383

RESUMEN

Mismatch-repair factors have a prominent role in surveying eukaryotic DNA-replication fidelity and in ensuring correct meiotic recombination. These functions depend on MutL-homolog heterodimers with Mlh1. In humans, MLH1 mutations underlie half of hereditary nonpolyposis colorectal cancers (HNPCCs). Here we report crystal structures of the MutLα (Mlh1-Pms1 heterodimer) C-terminal domain (CTD) from Saccharomyces cerevisiae, alone and in complex with fragments derived from Mlh1 partners. These structures reveal structural rearrangements and additional domains in MutLα as compared to the bacterial MutL counterparts and show that the strictly conserved C terminus of Mlh1 forms part of the Pms1 endonuclease site. The structures of the ternary complexes between MutLα(CTD) and Exo1 or Ntg2 fragments reveal the binding mode of the MIP-box motif shared by several Mlh1 partners. Finally, the structures provide a rationale for the deleterious impact of MLH1 mutations in HNPCCs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Enzimas Reparadoras del ADN/química , Endonucleasas/química , Proteínas Nucleares/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Endonucleasas/metabolismo , Humanos , Modelos Moleculares , Homólogo 1 de la Proteína MutL , Proteínas MutL , Proteínas Nucleares/metabolismo , Estructura Secundaria de Proteína
4.
DNA Repair (Amst) ; 9(10): 1098-111, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20813592

RESUMEN

Eukaryotic DNA polymerase δ (Pol δ) activity is crucial for chromosome replication and DNA repair and thus, plays an essential role in genome stability. In Saccharomyces cerevisiae, Pol δ is a heterotrimeric complex composed of the catalytic subunit Pol3, the structural B subunit Pol31, and Pol32, an additional auxiliary subunit. Pol3 interacts with Pol31 thanks to its C-terminal domain (CTD) and this interaction is of functional importance both in DNA replication and DNA repair. Interestingly, deletion of the last four C-terminal Pol3 residues, LSKW, in the pol3-ct mutant does not affect DNA replication but leads to defects in homologous recombination and in break-induced replication (BIR) repair pathways. The defect associated with pol3-ct could result from a defective interaction between Pol δ and a protein involved in recombination. However, we show that the LSKW motif is required for the interaction between Pol3 C-terminal end and Pol31. This loss of interaction is relevant in vivo since we found that pol3-ct confers HU sensitivity on its own and synthetic lethality with a POL32 deletion. Moreover, pol3-ct shows genetic interactions, both suppression and synthetic lethality, with POL31 mutant alleles. Structural analyses indicate that the B subunit of Pol δ displays a major conserved region at its surface and that pol31 alleles interacting with pol3-ct, correspond to substitutions of Pol31 amino acids that are situated in this particular region. Superimposition of our Pol31 model on the 3D architecture of the phylogenetically related DNA polymerase α (Pol α) suggests that Pol3 CTD interacts with the conserved region of Pol31, thus providing a molecular basis to understand the defects associated with pol3-ct. Taken together, our data highlight a stringent dependence on Pol δ complex stability in DNA repair.


Asunto(s)
Dominio Catalítico , ADN Polimerasa III/metabolismo , Reparación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Secuencia de Aminoácidos , ADN Polimerasa III/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Genes Letales , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Recombinación Genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell Biol ; 29(3): 907-18, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19015241

RESUMEN

Mlh1 is an essential factor of mismatch repair (MMR) and meiotic recombination. It interacts through its C-terminal region with MutL homologs and proteins involved in DNA repair and replication. In this study, we identified the site of yeast Mlh1 critical for the interaction with Exo1, Ntg2, and Sgs1 proteins, designated as site S2 by reference to the Mlh1/Pms1 heterodimerization site S1. We show that site S2 is also involved in the interaction between human MLH1 and EXO1 or BLM. Binding at this site involves a common motif on Mlh1 partners that we called the MIP-box for the Mlh1 interacting protein box. Direct and specific interactions between yeast Mlh1 and peptides derived from Exo1, Ntg2, and Sgs1 and between human MLH1 and peptide derived from EXO1 and BLM were measured with K(d) values ranging from 8.1 to 17.4 microM. In Saccharomyces cerevisiae, a mutant of Mlh1 targeted at site S2 (Mlh1-E682A) behaves as a hypomorphic form of Exo1. The site S2 in Mlh1 mediates Exo1 recruitment in order to optimize MMR-dependent mutation avoidance. Given the conservation of Mlh1 and Exo1 interaction, it may readily impact Mlh1-dependent functions such as cancer prevention in higher eukaryotes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia Conservada , Reparación de la Incompatibilidad de ADN , Exodesoxirribonucleasas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Sitios de Unión , Calorimetría , Dimerización , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Homólogo 1 de la Proteína MutL , Mutagénesis Sitio-Dirigida , Mutación/genética , Péptidos/metabolismo , Unión Proteica , Saccharomyces cerevisiae/enzimología , Eliminación de Secuencia , Especificidad de la Especie , Relación Estructura-Actividad , Técnicas del Sistema de Dos Híbridos
6.
J Biol Chem ; 278(20): 18471-7, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12637553

RESUMEN

Oxidative DNA base damage is mainly corrected by the base excision repair (BER) pathway, which can be divided into two subpathways depending on the length of the resynthetized patch, either one nucleotide for short patch BER or several nucleotides for long patch BER. The role of proteins in the course of BER processes has been investigated in vitro using purified enzymes and cell-free extracts. In this study, we have investigated the repair of 8-oxo-7,8-dihydroguanine (8-oxoG) in vivo using wild-type, polymerase beta(-/-) (Polbeta(-/-)), poly(ADP-ribose) polymerase-1(-/-) (PARP-1(-/-)), and Polbeta(-/-)PARP-1(-/-) 3T3 cell lines. We used non replicating plasmids containing a 8-oxoG:C base pair to study the repair of the lesion located in a transcribed sequence (TS) or in a non-transcribed sequence (NTS). The results show that 8-oxoG repair in TS is not significantly impaired in cells deficient in Polbeta or PARP-1 or both. Whereas 8-oxoG repair in NTS is normal in Polbeta-null cells, it is delayed in PARP-1-null cells and greatly impaired in cells deficient in both Polbeta and PARP-1. The removal of 8-oxoG and presumably the cleavage at the resulting apurinic/apyrimidinic site are not affected in the PARP-1(-/-)Polbeta(-/-) cell lines. However, 8-oxoG repair is incomplete, yielding plasmid molecules with a nick at the site of the lesion. Therefore, PARP-1(-/-)Polbeta(-/-) cell lines cannot perform 5'-dRP removal and/or DNA repair synthesis. Furthermore, the poly(ADP-ribosyl)ation activity of PARP-1 is essential for 8-oxoG repair in a Polbeta(-/-) context, because expression of the catalytically inactive PARP-1 (E988K) mutant does not restore 8-oxoG repair, whereas an wild type PARP-1 does.


Asunto(s)
Daño del ADN , ADN Polimerasa beta/metabolismo , Reparación del ADN , Guanosina/análogos & derivados , Oxígeno/metabolismo , Poli(ADP-Ribosa) Polimerasas/fisiología , Células 3T3 , Adyuvantes Inmunológicos/farmacología , Animales , Western Blotting , Línea Celular , Sistema Libre de Células , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos , Guanosina/farmacología , Cinética , Ratones , Mutación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA