Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 230(1): 372-386, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33452818

RESUMEN

Many crops are polyploid or have a polyploid ancestry. Recent phylogenetic analyses have found that polyploidy often preceded the domestication of crop plants. One explanation for this observation is that increased genetic diversity following polyploidy may have been important during the strong artificial selection that occurs during domestication. In order to test the connection between domestication and polyploidy, we identified and examined candidate genes associated with the domestication of the diverse crop varieties of Brassica rapa. Like all 'diploid' flowering plants, B. rapa has a diploidized paleopolyploid genome and experienced many rounds of whole genome duplication (WGD). We analyzed transcriptome data of more than 100 cultivated B. rapa accessions. Using a combination of approaches, we identified > 3000 candidate genes associated with the domestication of four major B. rapa crop varieties. Consistent with our expectation, we found that the candidate genes were significantly enriched with genes derived from the Brassiceae mesohexaploidy. We also observed that paleologs were significantly more diverse than non-paleologs. Our analyses find evidence for that genetic diversity derived from ancient polyploidy played a key role in the domestication of B. rapa and provide support for its importance in the success of modern agriculture.


Asunto(s)
Brassica rapa , Domesticación , Brassica rapa/genética , Genoma de Planta/genética , Filogenia , Poliploidía
2.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39114967

RESUMEN

Dominance refers to the effect of a heterozygous genotype relative to that of the two homozygous genotypes. The degree of dominance of mutations for fitness can have a profound impact on how deleterious and beneficial mutations change in frequency over time as well as on the patterns of linked neutral genetic variation surrounding such selected alleles. Since dominance is such a fundamental concept, it has received immense attention throughout the history of population genetics. Early work from Fisher, Wright, and Haldane focused on understanding the conceptual basis for why dominance exists. More recent work has attempted to test these theories and conceptual models by estimating dominance effects of mutations. However, estimating dominance coefficients has been notoriously challenging and has only been done in a few species in a limited number of studies. In this review, we first describe some of the early theoretical and conceptual models for understanding the mechanisms for the existence of dominance. Second, we discuss several approaches used to estimate dominance coefficients and summarize estimates of dominance coefficients. We note trends that have been observed across species, types of mutations, and functional categories of genes. By comparing estimates of dominance coefficients for different types of genes, we test several hypotheses for the existence of dominance. Lastly, we discuss how dominance influences the dynamics of beneficial and deleterious mutations in populations and how the degree of dominance of deleterious mutations influences the impact of inbreeding on fitness.


Asunto(s)
Genética de Población , Modelos Genéticos , Mutación , Aptitud Genética , Genes Dominantes , Selección Genética , Animales , Humanos , Genotipo
3.
Elife ; 102021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636724

RESUMEN

Advances in genome sequencing have improved our understanding of the genetic basis of human diseases, and thousands of human genes have been associated with different diseases. Recent genomic adaptation at disease genes has not been well characterized. Here, we compare the rate of strong recent adaptation in the form of selective sweeps between mendelian, non-infectious disease genes and non-disease genes across distinct human populations from the 1000 Genomes Project. We find that mendelian disease genes have experienced far less selective sweeps compared to non-disease genes especially in Africa. Investigating further the possible causes of the sweep deficit at disease genes, we find that this deficit is very strong at disease genes with both low recombination rates and with high numbers of associated disease variants, but is almost non-existent at disease genes with higher recombination rates or lower numbers of associated disease variants. Because segregating recessive deleterious variants have the ability to interfere with adaptive ones, these observations strongly suggest that adaptation has been slowed down by the presence of interfering recessive deleterious variants at disease genes. These results suggest that disease genes suffer from a transient inability to adapt as fast as the rest of the genome.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Variación Genética , Genoma Humano/genética , Bases de Datos Genéticas , Evolución Molecular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA